一、PageRank算法简介(摘自《Spark快速大数据分析》)
PageRank是执行多次连接的一个迭代算法,因此它是RDD分区操作的一个很好的用例。算法会维护两个数据集:一个由(pageID,linkList)的元素组成,包含每个页面的相邻页面的列表;另一个由(pageID,rank)元素组成,包含每个页面的当前排序值。它按如下步骤进行计算。
将每个页面的排序值初始化为1.0。
在每次迭代中,对页面p,向其每个相邻页面(有直接链接的页面)发送一个值为rank(p)/numNeighbors(p)的贡献值。
将每个页面的排序值设为0.15 + 0.85 * contributionsReceived。
最后两个步骤会重复几个循环,在此过程中,算法会逐渐收敛于每个页面的实际PageRank值。在实际操作中,收敛通常需要大约10轮迭代。
二 、模拟数据
假设一个由4个页面组成的小团体:A,B,C和D。相邻页面如下所示:
A:B C
B:A C
C:A B D
D:C
三、测试代码
import org.apache.spark.HashPartitioner
val links = sc.parallelize(List(("A",List("B","C")),("B",List("A","C")),("C",List("A","B","D")),("D",List("C")))).partitionBy(new HashPartitioner(100)).persist()
var ranks=links.mapValues(v=>1.0)
for (i <- 0 until 10) {
val contributions=links.join(ranks).flatMap {
case (pageId,(linksnew,rank)) => linksnew.map(dest=>(dest,rank/linksnew.size))
}
ranks=contributions.reduceByKey((x,y)=>x+y).mapValues(v=>0.15+0.85*v)
}
ranks.sortByKey().collect()
执行结果如下图所示。
初始的linksRDD和ranksRDD如下所示:
linksRDD:
Array[(String, List[String])] = Array((A,List(B, C)), (B,List(A, C)), (C,List(A, B, D)), (D,List(C)))
ranksRDD:
Array[(String, Double)] = Array((A,1.0), (B,1.0), (C,1.0), (D,1.0))
首次迭代后的contributionsRDD和ranksRDD如下所示:
contributionsRDD:
Array[(String, Double)] = Array((A,0.5), (A,0.3333333333333333), (B,0.5), (B,0.3333333333333333), (C,0.5), (C,0.5), (C,1.0), (D,0.3333333333333333))
ranksRDD:
Array[(String, Double)] = Array((A,0.8583333333333333), (B,0.8583333333333333), (C,1.8499999999999999), (D,0.43333333333333335))
验证数据:
第1次迭代:
PR(A)=0.15 + 0.85 * (1/2 + 1/3) = 0.858333
PR(B)=0.15 + 0.85 * (1/2 + 1/3) = 0.858333
PR(C)=0.15 + 0.85 * (1/2 + 1/2 + 1/1) = 1.85
PR(D)=0.15 + 0.85 * (1/3) = 0.433333
第2次迭代:
PR(A)=0.15 + 0.85 * (0.858333/2 + 1.85/3) = 1.038958191100
PR(B)=0.15 + 0.85 * (0.858333/2 + 1.85/3) = 1.038958191100
PR(C)=0.15 + 0.85 * (0.858333/2 + 0.858333/2 + 0.433333/1) = 1.247916100000
PR(D)=0.15 + 0.85 * (1.85/3) = 0.67416667
第3次迭代:
PR(A)=0.15 + 0.85 * (1.038958191100/2 + 1.247916100000/3) = 0.945133459550833333
PR(B)=0.15 + 0.85 * (1.038958191100/2 + 1.247916100000/3) = 0.945133459550833333
PR(C)=0.15 + 0.85 * (1.038958191100/2 + 1.038958191100/2 + 0.67416667/1) = 1.606156131935000000
PR(D)=0.15 + 0.85 * (1.247916100000/3) = 0.503576228333333333
四、代码说明(摘自《Spark快速大数据分析》)
这就行了!算法从将ranksRDD的每个元素的值初始化为1.0开始,然后在每次迭代中不断更新ranks变量。在Spark中编写PageRank的主体相当简单:首先对当前的ranksRDD和静态的linkRDD进行一次join()操作,来获取每个页面ID对应的相邻页面列表和当前的排序值,然后使用flatMap创建出“contributions”来记录每个页面对各个相邻页面的贡献。然后再把这些贡献值按照页面ID(根据获得共享的页面)分别累加起来,把该页面的排序值设为0.15 + 0.85 * contributionsReceived。
虽然代码本身很简单,这个示例程序还是做了不少事情来确保RDD以比较高效的方式进行分区,以最小化通信开销:
(1)请注意,linksRDD在每次迭代中都会和ranks发生连接操作。由于links是一个静态数据集,所以我们在程序一开始的时候就对它进行了分区操作,这样就不需要把它通过网络进行数据混洗了。实际上,linksRDD的字节数一般来说也会比ranks大得多,毕竟它包含每个页面的相邻页面列表(由页面ID组成),而不仅仅是一个Double值,因此这一优化相比PageRank的原始实现(例如普通的MapReduce)节约了相当可观的网络通信开销。
(2)出于相同的原因,我们调用links的persist()方法,将它保留在内存中以供每次迭代使用。
(3)当我们第一次创建ranks时,我们使用mapValues()而不是map()来保留父RDD(links)的分区方式,这样对它进行的第一次连接操作就会开销很小。
(4)在循环体中,我们在reduceByKey()后使用mapValues();因为reduceByKey()的结果已经是哈希分区的了,这样一来,下一次循环中将映射操作的结果再次与links进行连接操作时就会更加高效。
scala这语言是真的很简洁,大数据上的通用示例程序wordcount,用scala写一行搞定,如下图所示:
var input = sc.textFile("/NOTICE.txt")
input.flatMap(x=>x.split(" ")).countByValue()