##导入数据
data2 = pd.read_csv ('data2.csv', encoding='gbk', index_col='Dates')
data2.index=[dt.datetime.strptime(x,'%Y/%m/%d') for x in data2.index]
##股票价格走势作图
(data2/data2.iloc[0]*100).plot(figsize=(10,6))
plt.xlabel('股价')
plt.legend(loc='upper left')
plt.grid(True)
#计算对数收益率
log_returns=np.log(data2.pct_change()+1)
#做柱状图
log_returns.hist(bins=50, figsize=(10,6),layout=(2,3))
##通过分位数-分位数图来验证收益率是否符合正态分布
import statsmodels.api as sm
fig, axes = plt.subplots(3,2,figsize=(10,12))
for i in range(0,3):
for j in range(0,2):
sm.qqplot(log_returns.iloc[:,2*i+j].dropna(),line='s',ax=axes[i,j])
axes[i,j].set_title(log_returns.columns[2*i+j])
axes[i,j].set_xlabel('理论分位数')
axes[i,j].set_ylabel('样本分位数')
plt.subplots_adjust(wspace=0.3,hspace=0.4)# 调整小分图之间的间距
基于《Python与量化投资 从基础到实战》的内容学习