第一周:AlexNet

本文详细介绍了AlexNet在ILSVRC比赛中的应用,探讨了数据增强、Dropout、ReLU等关键技术和训练技巧。通过对比预训练模型与非预训练模型在猫狗数据集上的训练曲线,突显深度学习在图像识别领域的优势。
摘要由CSDN通过智能技术生成

1.ImageNet数据集与ILSVRC之间的关系是什么?

    答:ILSVRC使用ImageNet的一个子集,总共有大约120万个训练图像,50,000个验证图像,以及150,000个测试图像;1000类别标记。
    Large Scale Visual Recognition Challenge 即ILSVRC(2012~2017)比赛,是基于该数据集的1000个类别的比赛。训练集120万张图片。 从   2010年起, 每年ImageNet 的项目组织都会举办一场基于ImageNet 的大规模视觉识别竞赛( lmageNet Large Scale VisualRecognition Challenge , ILSVRC ) 。在ILSVRC 竞赛中诞生了许多成功的图像识别方法,其中很多是深度学习方法, 它们在赛后又会得到进一步发展与应用。
  ImageNet 数据集和ILSVRC 竞赛大大促进了计算机视觉技术, 乃至深度学习的发展, 在深度学习的浪潮中占有举足轻重的地位。

2.AlexNet训练过程的数据增强中,针对位置,采用什么方法将一张图片有可能变为2048张不一样的图片(1个像素值不一样,也叫不一样)?

  答:原图像是256*256,我们从中抽取224*224的部分,如此一张图片产生32*32=1024张图片。然后进行水平翻转变换,一张图片总计产生2048张图片。

3.AlexNet使用的Dropout,在使用过程中需要注意什么?


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值