无锁队列
写这篇博客前想声名以下几点。第一,这篇文章重点内容是关于无锁队列如何实现,并不会深入讲解底层的CAS机制。原因就是第二条,不知道在看博客的你是否在搜索框中输入过"无锁队列"关键字,你点开居然会惊讶的发现每一篇居然都是那么的相似,一直不理解写博客A抄B,B抄C只是为了骗访客吗?
这篇被抄来抄去的博客就是酷壳陈皓老师的原创,老师的博客中深入讲解了无锁队列的原理。只是缺少最后一份代码的实现,既然有大牛级别的讲解,那我们就完成那部分没有实现的部分。
还不曾知道无锁队列底层CAS机制的同学可以看看陈老师和程序员小灰的这两篇文章:无锁队列的实现 和 什么是CAS机制
无锁队列基本原理
其实CAS机制并不难理解,你只需要理解CAS机制中的三个关键词。分别为原本值、期望值、更新值(名词)。这三个值配合起来用一句话概括为:如果原本值和期望值相同,那么就将原本值修改为更新值
从图中可以看出,CAS机制并不难理解,那么下面就一起看看无锁队列的思想吧。
无锁队列具体实现
我们这里需要使用C++11中引入的atomic类,这个类被意为原子的操作,函数接口很容易使用,我们先来看无锁队列实现思想,然后结合代码来理解会更容易
无锁队列基本结构
对每一个指针操作时都需要是原子的,也就是指针的指向要么发生变化,要么没有变化,不会产生第三种结果。每个队列需要有一个哑节点,这样能更好的判断队列是否为空。
#include<atomic>
using namespace std;
template<class T>
class LockFreeQueue
{
struct Node
{
T _value;
atomic<Node*> _next;
Node(const T& v)
:_value(v)
,_next(nullptr)
{}
};
public:
LockFreeQueue()
{
_head = _tail = new Node(T());
}
~LockFreeQueue()
{
Node* cur = _head;
while(cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
}
private:
atomic<Node*> _head;
atomic<Node*> _tail;
};
无锁队列如何入队列?
下面介绍一下atomic类型的两个函数操作
//取出当前atomic对象指向的值
T load (memory_order sync = memory_order_seq_cst) const volatile noexcept;
//如果内存中的值和参数一相同,那么替换为参数二,成功返回true
bool compare_exchange_weak (T& expected, T val,
memory_order sync = memory_order_seq_cst) volatile noexcept;
两个函数看起来很复杂,用起来其实超级简单,现在一起来看对无锁队列的插入代码块:
void Enqueue(const T& x)
{
Node* newnode = new Node(x);//要插入的新值
Node* oldtail = nullptr;//旧的尾节点
Node* nullnode = nullptr;//空节点
do
{
oldtail = _tail.load();//用load取出当前_tail节点的值
}
//如果当前tail节点的下一个节点是空,也就是等于参数一,那么修改为参数二
while (oldtail->_next.compare_exchange_weak(nullnode, newnode) != true);
//由于现在的真正的尾节点是newnode,所以将_tail节点更新为newnode
_tail.compare_exchange_weak(oldtail, newnode);
}
这里要明白,while条件里的CAS语句是为了插入这个新节点,而最后一句是为了将控制整个队列的_tail指针修改为指向新尾部
无锁队列如何出队列?
出队列比插入更简单,那么废话不多说,直接看看出队列如何实现:
T DeQueue()
{
Node* oldhead = _head.load();//取出当前的头节点,也就是哑节点
T ret;
do
{
Node* next = oldhead->_next;//取出头节点的下一个节点,此节点中有我们想要的值
if(next == nullptr)
{
return T();
}
else
{
ret = next->_value;//取走值
}
}
//将头节点(哑节点)修改为下一个节点
while(_head.compare_exchange_weak(oldhead,oldhead->_next) != true);
delete oldhead;
return ret;
}
判断队列是否为空和其他问题
判断是否为空,直接判断头部和尾部是否指向同一个节点
bool Empty()
{
return _head.load() == _tail.load();
}
因为我们的无锁队列是不能够被拷贝的,所以我们使用delete关键字直接将拷贝构造函数删除掉
LockFreeQueue(const LockFreeQueue<T>&) = delete;
到这里,我们的无锁队列就实现完成了,之所以这么简单,还是因为C++库为我们提供了atomic这个类。无锁队列这里重在理解他的如何使用CAS的思想去更新节点的。
无锁队列全部源码和测试
经过笔者多次测试,发现无锁队列总体来说还是不错的,比加锁的队列能快一倍左右(第一行为无锁队列),这是插入10w数据的一次的结果,基本在这两个数字中波动。但是无锁队列对于线程数量的选择很关键。随着线程数增大,最后会比加锁队列更差,原因不难理解,CAS机制本身还是太消耗CPU资源了。
#pragma once
#include<atomic>
#include<iostream>
#include<queue>
#include<thread>
#include<mutex>
#include<condition_variable>
using namespace std;
template<class T>
class LockFreeQueue
{
struct Node
{
T _value;
std::atomic<Node*> _next;
Node(const T& x)
: _value(x)
, _next(nullptr)
{}
};
public:
LockFreeQueue()
{
_head = _tail = new Node(T());
}
LockFreeQueue(const LockFreeQueue<T>&) = delete;
~LockFreeQueue()
{
Node* cur = _head;
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
}
void Enqueue(const T& x)
{
Node* newnode = new Node(x);
Node* oldtail = nullptr;
Node* nullnode = nullptr;
do
{
oldtail = _tail.load();
} while (oldtail->_next.compare_exchange_weak(nullnode, newnode) != true);
_tail.compare_exchange_weak(oldtail, newnode);
}
T Dequeue()
{
Node* oldhead = _head.load();
T headvalue;
do
{
Node* next = oldhead->_next;
if (next == nullptr)
{
return T();
}
else
{
headvalue = next->_value;
}
}
while (_head.compare_exchange_weak(oldhead, oldhead->_next) != true);
delete oldhead;
return headvalue;
}
bool Empty()
{
return _head.load() == _tail.load();
}
private:
std::atomic<Node*> _head;
std::atomic<Node*> _tail;
};
mutex mutx;
int main()
{
LockFreeQueue<int> lq;
queue<int> nq;
atomic<size_t> n = 100000;
//测试无锁队列
{
size_t costtime = 0;
vector<thread> threads;
for (size_t i = 0; i < 3; ++i)
{
threads.push_back(thread([&]()
{
size_t begin = 0, end = 0;
begin = clock();
for (size_t j = 0; j < n; ++j)
{
lq.Enqueue(j);
}
end = clock();
costtime += (end - begin);
}));
}
for (auto& e : threads)
{
e.join();
}
cout << costtime << endl;
}
//测试有锁队列
{
size_t costtime = 0;
vector<thread> threads;
for (size_t i = 0; i < 3; ++i)
{
threads.push_back(thread([&]()
{
size_t begin = 0, end = 0;
begin = clock();
for (size_t j = 0; j < n; ++j)
{
mutx.lock();
nq.push(j);
mutx.unlock();
}
end = clock();
costtime += (end - begin);
}));
}
for (auto& e : threads)
{
e.join();
}
cout << costtime << endl;
}
return 0;
}