数据结构之深度优先和广度优先遍历

为什么要有图

1)前面我们学了线性表和树

2)线性表局限于一个直接前驱和一个直接后继的关系

3)树也只能有一个直接前驱也就是父节点

4)当我们需要表示多对多的关系时,这里我们就用到了图。

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。结点也可以称为顶点

图的常用概念

1)顶点(vertex) 2)边(edge) 3)路径 4)无向图
在这里插入图片描述

5)有向图 6)带权图
在这里插入图片描述

图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点。

在这里插入图片描述

邻接表

1)邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.

2)邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

3)举例说明

在这里插入图片描述

图的深度优先遍历

图遍历介绍

所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:

(1)深度优先遍历

(2)广度优先遍历

深度优先遍历基本思想

图的深度优先搜索(DepthFirstSearch)。

1)深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点,可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

2)我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

3)显然,深度优先搜索是一个递归的过程

深度优先遍历算法步骤

1)访问初始结点v,并标记结点v为已访问。

2)查找结点v的第一个邻接结点w。

3)若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。

4)若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

5)查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

深度优先算法的代码实现

	//深度优先遍历算法
	//i 第一次就是 0
	private void dfs(boolean[] isVisited, int i) {
		//首先我们访问该结点,输出
		System.out.print(getValueByIndex(i) + "->");
		//将结点设置为已经访问
		isVisited[i] = true;
		//查找结点i的第一个邻接结点w
		int w = getFirstNeighbor(i);
		while(w != -1) {//说明有
			if(!isVisited[w]) {
				dfs(isVisited, w);
			}
			//如果w结点已经被访问过
			w = getNextNeighbor(i, w);
		}
		
	}
	
	//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
	public void dfs() {
		isVisited = new boolean[vertexList.size()];
		//遍历所有的结点,进行dfs[回溯]
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				dfs(isVisited, i);
			}
		}
	}

图的广度优先遍历

广度优先遍历基本思想

1)图的广度优先搜索(BroadFirstSearch)。

2)类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

广度优先遍历算法步骤

1)访问初始结点v并标记结点v为已访问。

    2)结点v入队列 
    
     3)当队列非空时,继续执行,否则算法结束。
    
    4)出队列,取得队头结点u。
    
    5)查找结点u的第一个邻接结点w。
    
    6)若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
    
    ​		6.1若结点w尚未被访问,则访问结点w并标记为已访问。
    
    ​		6.2结点w入队列
    
    ​		6.3查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

广度优先算法的代码实现

	private void bfs(boolean[] isVisited, int i) {
		int u ; // 表示队列的头结点对应下标
		int w ; // 邻接结点w
		//队列,记录结点访问的顺序
		LinkedList queue = new LinkedList();
		//访问结点,输出结点信息
		System.out.print(getValueByIndex(i) + "=>");
		//标记为已访问
		isVisited[i] = true;
		//将结点加入队列
		queue.addLast(i);
		
		while( !queue.isEmpty()) {
			//取出队列的头结点下标
			u = (Integer)queue.removeFirst();
			//得到第一个邻接结点的下标 w 
			w = getFirstNeighbor(u);
			while(w != -1) {//找到
				//是否访问过
				if(!isVisited[w]) {
					System.out.print(getValueByIndex(w) + "=>");
					//标记已经访问
					isVisited[w] = true;
					//入队
					queue.addLast(w);
				}
				//以u为前驱点,找w后面的下一个邻结点
				w = getNextNeighbor(u, w); //体现出我们的广度优先
			}
		}
		
	} 
	
	//遍历所有的结点,都进行广度优先搜索
	public void bfs() {
		isVisited = new boolean[vertexList.size()];
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				bfs(isVisited, i);
			}
		}
	}

图结构完整代码

package com.atguigu.graph;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

public class Graph {

	private ArrayList<String> vertexList; //存储顶点集合
	private int[][] edges; //存储图对应的邻结矩阵
	private int numOfEdges; //表示边的数目
	//定义给数组boolean[], 记录某个结点是否被访问
	private boolean[] isVisited;
	
	public static void main(String[] args) {
		//测试一把图是否创建ok
		int n = 8;  //结点的个数
		//String Vertexs[] = {"A", "B", "C", "D", "E"};
		String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
		
		//创建图对象
		Graph graph = new Graph(n);
		//循环的添加顶点
		for(String vertex: Vertexs) {
			graph.insertVertex(vertex);
		}
		
		//添加边
		//A-B A-C B-C B-D B-E 
//		graph.insertEdge(0, 1, 1); // A-B
//		graph.insertEdge(0, 2, 1); // 
//		graph.insertEdge(1, 2, 1); // 
//		graph.insertEdge(1, 3, 1); // 
//		graph.insertEdge(1, 4, 1); // 
		
		//更新边的关系
		graph.insertEdge(0, 1, 1);
		graph.insertEdge(0, 2, 1);
		graph.insertEdge(1, 3, 1);
		graph.insertEdge(1, 4, 1);
		graph.insertEdge(3, 7, 1);
		graph.insertEdge(4, 7, 1);
		graph.insertEdge(2, 5, 1);
		graph.insertEdge(2, 6, 1);
		graph.insertEdge(5, 6, 1);

		
		
		//显示一把邻结矩阵
		graph.showGraph();
		
		//测试一把,我们的dfs遍历是否ok
		System.out.println("深度遍历");
		graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]
//		System.out.println();
		System.out.println("广度优先!");
		graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]
		
	}
	
	//构造器
	public Graph(int n) {
		//初始化矩阵和vertexList
		edges = new int[n][n];
		vertexList = new ArrayList<String>(n);
		numOfEdges = 0;
		
	}
	
	//得到第一个邻接结点的下标 w 
	/**
	 * 
	 * @param index 
	 * @return 如果存在就返回对应的下标,否则返回-1
	 */
	public int getFirstNeighbor(int index) {
		for(int j = 0; j < vertexList.size(); j++) {
			if(edges[index][j] > 0) {
				return j;
			}
		}
		return -1;
	}
	//根据前一个邻接结点的下标来获取下一个邻接结点
	public int getNextNeighbor(int v1, int v2) {
		for(int j = v2 + 1; j < vertexList.size(); j++) {
			if(edges[v1][j] > 0) {
				return j;
			}
		}
		return -1;
	}
	
	//深度优先遍历算法
	//i 第一次就是 0
	private void dfs(boolean[] isVisited, int i) {
		//首先我们访问该结点,输出
		System.out.print(getValueByIndex(i) + "->");
		//将结点设置为已经访问
		isVisited[i] = true;
		//查找结点i的第一个邻接结点w
		int w = getFirstNeighbor(i);
		while(w != -1) {//说明有
			if(!isVisited[w]) {
				dfs(isVisited, w);
			}
			//如果w结点已经被访问过
			w = getNextNeighbor(i, w);
		}
		
	}
	
	//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
	public void dfs() {
		isVisited = new boolean[vertexList.size()];
		//遍历所有的结点,进行dfs[回溯]
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				dfs(isVisited, i);
			}
		}
	}
	
	//对一个结点进行广度优先遍历的方法
	private void bfs(boolean[] isVisited, int i) {
		int u ; // 表示队列的头结点对应下标
		int w ; // 邻接结点w
		//队列,记录结点访问的顺序
		LinkedList queue = new LinkedList();
		//访问结点,输出结点信息
		System.out.print(getValueByIndex(i) + "=>");
		//标记为已访问
		isVisited[i] = true;
		//将结点加入队列
		queue.addLast(i);
		
		while( !queue.isEmpty()) {
			//取出队列的头结点下标
			u = (Integer)queue.removeFirst();
			//得到第一个邻接结点的下标 w 
			w = getFirstNeighbor(u);
			while(w != -1) {//找到
				//是否访问过
				if(!isVisited[w]) {
					System.out.print(getValueByIndex(w) + "=>");
					//标记已经访问
					isVisited[w] = true;
					//入队
					queue.addLast(w);
				}
				//以u为前驱点,找w后面的下一个邻结点
				w = getNextNeighbor(u, w); //体现出我们的广度优先
			}
		}
		
	} 
	
	//遍历所有的结点,都进行广度优先搜索
	public void bfs() {
		isVisited = new boolean[vertexList.size()];
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				bfs(isVisited, i);
			}
		}
	}
	
	//图中常用的方法
	//返回结点的个数
	public int getNumOfVertex() {
		return vertexList.size();
	}
	//显示图对应的矩阵
	public void showGraph() {
		for(int[] link : edges) {
			System.err.println(Arrays.toString(link));
		}
	}
	//得到边的数目
	public int getNumOfEdges() {
		return numOfEdges;
	}
	//返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
	public String getValueByIndex(int i) {
		return vertexList.get(i);
	}
	//返回v1和v2的权值
	public int getWeight(int v1, int v2) {
		return edges[v1][v2];
	}
	//插入结点
	public void insertVertex(String vertex) {
		vertexList.add(vertex);
	}
	//添加边
	/**
	 * 
	 * @param v1 表示点的下标即使第几个顶点  "A"-"B" "A"->0 "B"->1
	 * @param v2 第二个顶点对应的下标
	 * @param weight 表示 
	 */
	public void insertEdge(int v1, int v2, int weight) {
		edges[v1][v2] = weight;
		edges[v2][v1] = weight;
		numOfEdges++;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值