Problem Description
6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
(图见QQ群)
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
(图见QQ群)
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。
Input
五
Output
输出一个整数,即所有不同的分割方法的数量
题目思路:用深搜,从(3,3)开始,每次搜之后都把 它和它的对称点都给 标记,这样之后得要的图形就是中心对称
最后,要把结果 sum/4,因为旋转的不算
可以用分割格子的线来求,因为线也是关于(3,3)点对称的,所以可以初始化从点(3,3)开始用深搜同时走对称的两条线。
因为旋转对称属于同一种分法,所以求得的结果除以4即是答案
#include<iostream>
#define N 6
int book[10][10];//用来表示格子
int dir[4][2]={-1,0,1,0,0,-1,0,1};//四个方向
using namespace std;
int ans=0;//记录总共的数目
void dfs(int x,int y)
{
if(x==0||y==0||x==N||y==N)
{
ans++;
return ;
}
for(int i=0;i<4;i++)
{
int nx=x+dir[i][0];
int ny=y+dir[i][1];
if(nx<0||nx>N||y<0||y>N) //排除经过方向改变后会发生越界的情况
continue;
if(!book[nx][ny])
{
book[nx][ny]=1;
book[N-nx][N-ny]=1;
dfs(nx,ny);
book[nx][ny]=0;
book[N-nx][N-ny]=0;
}
}
}
int main()
{
book[N/2][N/2]=1;
dfs(N/2,N/2);
cout<<ans/4;
return 0;
}