寒假蓝桥杯训练二1025剪方格 (连通块的模板题)

Problem Description

6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
(图见QQ群)
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。

Input

Output

输出一个整数,即所有不同的分割方法的数量

题目思路:用深搜,从(3,3)开始,每次搜之后都把 它和它的对称点都给 标记,这样之后得要的图形就是中心对称

                最后,要把结果 sum/4,因为旋转的不算

                

可以用分割格子的线来求,因为线也是关于(3,3)点对称的,所以可以初始化从点(3,3)开始用深搜同时走对称的两条线。

因为旋转对称属于同一种分法,所以求得的结果除以4即是答案


#include<iostream>
#define N 6
int book[10][10];//用来表示格子 
int dir[4][2]={-1,0,1,0,0,-1,0,1};//四个方向 
using namespace std;
int ans=0;//记录总共的数目 
void dfs(int x,int y)
{
	if(x==0||y==0||x==N||y==N)
	{
		ans++;
		return ;
	}
	for(int i=0;i<4;i++)
	{
		int nx=x+dir[i][0];
		int ny=y+dir[i][1];
		if(nx<0||nx>N||y<0||y>N) //排除经过方向改变后会发生越界的情况 
		continue;
		if(!book[nx][ny])
		{
		book[nx][ny]=1;
		book[N-nx][N-ny]=1;
		dfs(nx,ny);
		
		book[nx][ny]=0;
		book[N-nx][N-ny]=0;	
		}
		
	}
}
int main()
{
	book[N/2][N/2]=1;
	dfs(N/2,N/2);
	cout<<ans/4;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值