可以说是自己做的第一道递归题了
Problem Description
小明刚刚看完电影《第39级台阶》,离开电影院的时候,他数了数礼堂前的台阶数,恰好是39级!
站在台阶前,他突然又想着一个问题:
如果我每一步只能迈上1个或2个台阶。先迈左脚,然后左右交替,最后一步是迈右脚,也就是说一共要走偶数步。那么,上完39级台阶,有多少种不同的上法呢?
请你利用计算机的优势,帮助小明寻找答案。
要求提交的是一个整数。
注意:不要提交解答过程,或其它的辅助说明文字。
站在台阶前,他突然又想着一个问题:
如果我每一步只能迈上1个或2个台阶。先迈左脚,然后左右交替,最后一步是迈右脚,也就是说一共要走偶数步。那么,上完39级台阶,有多少种不同的上法呢?
请你利用计算机的优势,帮助小明寻找答案。
要求提交的是一个整数。
注意:不要提交解答过程,或其它的辅助说明文字。
Input
无
Output
输出一个整数
题目思路:自己一开始理解错了,以为就是简单的 递推公式f(n)=f(n-1)+f(n-2)
后来才发现题目中有个要求,就是要走偶数步
可以有两种做法一种是 递推(如果真正理解起来本质也是DFS) 从 stairs=39,step=0 递推到 stairs=0,然后判断 step是否为偶数,如果是的话就 cnt++;
一张图就明白了
这种递归的效果如下图:
另一种做法,直接DFS
递归:
#include<iostream>
using namespace std;
int cnt=0;
void fun(int stair,int step)//stair 表示剩余的楼梯 step 代表走过的路数
{
if(stair<0) return ;//假如 stair=1 的话 那么fun(stair-2,step+1); 就不予考虑
if(stair==0)
{
if(step%2==0)
cnt++;
return ;
}
fun(stair-1,step+1);//这一步走了一个台阶
fun(stair-2,step+1);// 这一步走了两个台阶
}
int main()
{
fun(39,0);
cout<<cnt<<endl;
return 0;
}
DFS
#include<iostream>
using namespace std;
int cnt=0;
void dfs(int m,int step)
{
if(m>39) return;
if(m==39)
{
if(step%2==0)
cnt++;
return ;
}
dfs(m+1,step+1);
dfs(m+2,step+1);
}
int main()
{
dfs(0,0);
cout<<cnt<<endl;
return 0;
}