欧几里德与扩展欧几里德算法

欧几里德算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。

基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。

  • 第一种证明: 
    a可以表示成a = kb + r,则r = a mod b 
    假设d是a,b的一个公约数,则有 
    d|a, d|b,而r = a - kb,因此d|r 
    因此d是(b,a mod b)的公约数 
    假设d 是(b,a mod b)的公约数,则 
    d | b , d |r ,但是a = kb +r 
    因此d也是(a,b)的公约数 
    因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证

  • 第二种证明: 
    要证欧几里德算法成立,即证: gcd(a,b)=gcd(b,r),其中 gcd是取最大公约数的意思,r=a mod b 
    下面证 gcd(a,b)=gcd(b,r) 
    设 c是a,b的最大公约数,即c=gcd(a,b),则有 a=mc,b=nc,其中m,n为正整数,且m,n互为质数 
    由 r= a mod b可知,r= a- qb 其中,q是正整数, 
    则 r=a-qb=mc-qnc=(m-qn)c 
    b=nc,r=(m-qn)c,且n,(m-qn)互质(假设n,m-qn不互质,则n=xd, m-qn=yd 其中x,y,d都是正整数,且d>1 
    则a=mc=(qx+y)dc, b=xdc,这时a,b 的最大公约数变成dc,与前提矛盾, 
    所以n ,m-qn一定互质) 
    则gcd(b,r)=c=gcd(a,b) 
    得证。

算法的实现:

最简单的方法就是应用递归算法,代码如下:

int gcd(int a,int b)
{
    return b==0?a:gcd(b,a%b);
}
  • 1
  • 2
  • 3
  • 4

扩展欧几里德算法

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

  • 证明:设 a>b。 
      1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

      2,ab!=0 时

      设 ax1+by1=gcd(a,b);

      bx2+(a mod b)y2=gcd(b,a mod b);

      根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

      则:ax1+by1=bx2+(a mod b)y2;

      即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

      根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

    这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2. 
    上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。 
    扩展欧几里德的递归代码:

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int r=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return r;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

扩展欧几里德非递归代码:

int exgcd(int m,int n,int &x,int &y)
{
    int x1,y1,x0,y0;
    x0=1; y0=0;
    x1=0; y1=1;
    x=0; y=1;
    int r=m%n;
    int q=(m-r)/n;
    while(r)
    {
        x=x0-q*x1; y=y0-q*y1;
        x0=x1; y0=y1;
        x1=x; y1=y;
        m=n; n=r; r=m%n;
        q=(m-r)/n;
    }
    return n;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

扩展欧几里德算法的应用主要有以下三方面:

(1)求解不定方程;

(2)求解模线性方程(线性同余方程);

(3)求解模的逆元;

(1)使用扩展欧几里德算法解决不定方程的办法:

对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。 
上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q0后,p * a+q * b = Gcd(p, q)的其他整数解满足: 
p = p0 + b/Gcd(p, q) * t 
q = q0 - a/Gcd(p, q) * t(其中t为任意整数) 
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(p, q)的每个解乘上 c/Gcd(p, q) 即可。

在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),

p * a+q * b = c的其他整数解满足:

p = p1 + b/Gcd(a, b) * t 
q = q1 - a/Gcd(a, b) * t(其中t为任意整数) 
p 、q就是p * a+q * b = c的所有整数解。 
相关证明可参考:http://www.cnblogs.com/void/archive/2011/04/18/2020357.html

用扩展欧几里得算法解不定方程ax+by=c; 
代码如下:

bool linear_equation(int a,int b,int c,int &x,int &y)
{
    int d=exgcd(a,b,x,y);
    if(c%d)
        return false;
    int k=c/d;
    x*=k; y*=k;    //求得的只是其中一组解
    return true;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

(2)用扩展欧几里德算法求解模线性方程的方法:

同余方程 ax≡b (mod n)对于未知数 x 有解,当且仅当 gcd(a,n) | b。且方程有解时,方程有 gcd(a,n) 个解。

求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)

设 d= gcd(a,n),假如整数 x 和 y,满足 d= ax+ ny(用扩展欧几里德得出)。如果 d| b,则方程

a* x0+ n* y0= d, 方程两边乘以 b/ d,(因为 d|b,所以能够整除),得到 a* x0* b/ d+ n* y0* b/ d= b。 
所以 x= x0* b/ d,y= y0* b/ d 为 ax+ ny= b 的一个解,所以 x= x0* b/ d 为 ax= b (mod n ) 的解。

ax≡b (mod n)的一个解为 x0= x* (b/ d ) mod n,且方程的 d 个解分别为 xi= (x0+ i* (n/ d ))mod n {i= 0… d-1}。

设ans=x*(b/d),s=n/d;

方程ax≡b (mod n)的最小整数解为:(ans%s+s)%s;

相关证明:

  • 证明方程有一解是: x0=x(b/d)modnx0=x′(b/d)modn 
    由 ax0=ax(b/d)(modn)a∗x0=a∗x′(b/d)(modn) 
    ax0=d(b/d)(modn)a∗x0=d(b/d)(modn) (由于 ax’ = d (mod n)) 
    = b (mod n) 
    证明方程有d个解: xi = x0 + i*(n/d) (mod n); 
    由 a*xi (mod n) = a * (x0 + i*(n/d)) (mod n) 
    = (a*x0+a*i*(n/d)) (mod n) 
    = a * x0 (mod n) (由于 d | a) 
    = b 
    首先看一个简单的例子: 
    5x=4(mod3)5x=4(mod3) 
    解得x = 2,5,8,11,14……. 
    由此可以发现一个规律,就是解的间隔是3. 
    那么这个解的间隔是怎么决定的呢? 
    如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了. 
    我们设解之间的间隔为dx. 
    那么有 
    ax=b(modn);a∗x=b(modn); 
    a(x+dx)=b(modn);a∗(x+dx)=b(modn); 
    两式相减,得到: 
    adx(modn)=0;a∗dx(modn)=0; 
    也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的. 
    设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d. 
    adx=an/d;a∗dx=a∗n/d; 
    所以dx=n/d.dx=n/d. 
    因此解之间的间隔就求出来了. 
    代码如下:
bool modular_linear_equation(int a,int b,int n)
{
    int x,y,x0,i;
    int d=exgcd(a,n,x,y);
    if(b%d)
        return false;
    x0=x*(b/d)%n;   //特解
    for(i=1;i<d;i++)
        printf("%d\n",(x0+i*(n/d))%n);
    return true;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

(3)用欧几里德算法求模的逆元: 
同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。 
在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。 
这时称求出的 x 为 a 的对模 n 乘法的逆元。 
对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程 
ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。


转载自: 
欧几里德与扩展欧几里德算法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值