【数学】扩展欧几里得算法

二元一次不定方程

扩展欧几里得算法,简称 扩欧 e x g c d \rm exgcd exgcd),是用来求出方程

a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)

的整数解的,其中 a , b a,b a,b 均为整数.

前置芝士:欧几里德算法裴蜀定理

我们考虑欧几里德算法的最后一步,当 b = 0 b=0 b=0 时,要使得

a x + 0 y = gcd ⁡ ( a , 0 ) = a ax+0y=\gcd(a,0)=a ax+0y=gcd(a,0)=a

成立,那么只要取 x = 1 x=1 x=1 y y y 取任意整数即可,不妨取 y = 0 y=0 y=0.

因为 gcd ⁡ ( a , b ) = gcd ⁡ ( b , a   m o d   b ) \gcd(a,b)=\gcd(b,a\bmod b) gcd(a,b)=gcd(b,amodb),所以可以考虑当整数 x , y x,y x,y 使得

b x + ( a   m o d   b ) y = gcd ⁡ ( b , a   m o d   b ) bx+(a\bmod b)y=\gcd(b,a\bmod b) bx+(amodb)y=gcd(b,amodb)

成立时,如何推出使得

a x ′ + b y ′ = gcd ⁡ ( a , b ) ax'+by'=\gcd(a,b) ax+by=gcd(a,b)

成立的 x ′ , y ′ x',y' x,y.

对于 b x + ( a   m o d   b ) y = gcd ⁡ ( b , a   m o d   b ) bx+(a\bmod b)y=\gcd(b,a\bmod b) bx+(amodb)y=gcd(b,amodb)

等 式 左 边 = b x + ( a − b ⌊ a b ⌋ ) y = a y + b ( x − ⌊ a b ⌋ y ) \begin{aligned}等式左边&=bx+(a-b\left\lfloor\frac{a}{b}\right\rfloor)y\\&=ay+b(x-\left\lfloor\frac{a}{b}\right\rfloor y)\end{aligned} =bx+(abba)y=ay+b(xbay)

等 式 右 边 = gcd ⁡ ( a , b ) \begin{aligned}等式右边&=\gcd(a,b)\end{aligned} =gcd(a,b)

所以要使 a x ′ + b y ′ = gcd ⁡ ( a , b ) ax'+by'=\gcd(a,b) ax+by=gcd(a,b) 的话,取 x ′ = y , y ′ = x − ⌊ a b ⌋ y x'=y,y'=x-\left\lfloor\frac{a}{b}\right\rfloor y x=y,y=xbay 即可.

就这样一直递归.

下面提供了求解 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 的同时返回 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) 的代码.

int x, y;

int exgcd(int a, int b)
{
	if (!b)
	{
		x = 1, y = 0;
		return a;
	}
	int Gcd = exgcd(b, a % b);
	int tmp = x; // x 会被覆盖掉,先存下来
	x = y;
	y = tmp - a / b * y;
   return Gcd;
}

int main()
{
	int a, b;
	scanf("%d%d", &a, &b);
	exgcd(a, b);
	printf("%d %d\n", x, y);
	return 0;
}

现在来考虑如何求出方程

a x + b y = c ax+by=c ax+by=c

的整数解,其中 a , b , c a,b,c a,b,c 均为整数.

首先,由裴蜀定理知有整数解的充要条件为 gcd ⁡ ( a , b ) ∣ c \gcd(a,b)\mid c gcd(a,b)c.

gcd ⁡ ( a , b ) ∤ c \gcd(a,b)\nmid c gcd(a,b)c 时,方程无整数解.

gcd ⁡ ( a , b ) ∣ c \gcd(a,b)\mid c gcd(a,b)c 时,先求出满足

a x ′ + b y ′ = gcd ⁡ ( a , b ) ax'+by'=\gcd(a,b) ax+by=gcd(a,b)

的整数 x ′ , y ′ x',y' x,y,那么少了 c gcd ⁡ ( a , b ) \frac{c}{\gcd(a,b)} gcd(a,b)c 倍,故令 x = x ′ ⋅ c gcd ⁡ ( a , b ) , y = y ′ ⋅ c gcd ⁡ ( a , b ) x=x'\cdot\frac{c}{\gcd(a,b)},y=y'\cdot\frac{c}{\gcd(a,b)} x=xgcd(a,b)c,y=ygcd(a,b)c,即可使 a x + b y = c ax+by=c ax+by=c.

通解:

假设已经得到了一组解 { x = x 1 y = y 1 \begin{cases}x=x_1\\y=y_1\end{cases} {x=x1y=y1,那么方程的通解可表示成 { x = x 1 + b t y = y 1 − a t \begin{cases}x=x_1+bt\\y=y_1-at\end{cases} {x=x1+bty=y1at t t t 为整数)

这个非常显然,手推一下就出来啦。

练习:P5656 【模板】二元一次不定方程 (exgcd)


线性同余方程

P1082 [NOIP2012 提高组] 同余方程

求出关于 x x x 的同余方程

a x ≡ 1 ( m o d b ) ax\equiv1\pmod b ax1(modb)

的最小 整数解,其中 a , b a,b a,b 均为整数.

考虑将原方程转化成

a x + b y = 1 ax+by=1 ax+by=1

其中 y y y 为整数.

题目保证有解,说明这个方程也一定有解,直接用扩欧.

注意要求的是最小 整数解,所以得转成整数.

Code \text{Code} Code

#include <iostream>
#include <cstdio>
#define int long long
using namespace std;

int x, y;

void exgcd(int a, int b)
{
	if (!b)
	{
		x = 1, y = 0;
		return;
	}
	exgcd(b, a % b);
	int tmp = x;
	x = y;
	y = tmp - a / b * y;
}

signed main()
{
	int a, b;
	scanf("%lld%lld", &a, &b);
	exgcd(a, b);
	printf("%lld\n", (x % b + b) % b);
	return 0;
}

练习:P1516 青蛙的约会

  • 11
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值