Pytorch
文章平均质量分 70
Pytorch以其灵活性, 方便调试, API的统一性(当然反面教材就是tensorflow), 广泛受到学术界的好评. Luffy一开始加入的是tensorflow, 在一碰到pytorch之后, 就...
LuffysMan
这个作者很懒,什么都没留下…
展开
-
Pytorch autograd.backward理解
参考了解释Pytorch autograd,backward详解通常在训练的时候, 最后的loss是一个标量, 无脑使用loss.backward()进行反向传播计算梯度即可. 但是碰到有些代码中出现了多个loss, 比如这样的代码:torch.autograd.backward([loss0, loss1], [torch.ones_like(loss0), torch.ones_like(loss1)])当loss是一个标量值的时候此时反向传播求梯度比较好理解, 假设>>>原创 2021-01-14 01:09:47 · 1077 阅读 · 0 评论 -
pytorch中torch.Module().eval()有何用处?是否设置之后可以保证模型参数不被更新?
关于pytorch Module类eval方法只是一个标志位实测效果结论 最近看一篇论文的源码, 作者为了将某几层bn层冻结, 居然对每个bn层调用了 bn层的eval()方法. 我有所怀疑是否有效, 查看了pytorch对应的源码, 并做了测试, 确定这样做没什么卵用.只是一个标志位model.eval()只是设置一个标志位, 同理model.train()也是一样. 查看Module类源码, eval()方法只做了一件事情, 调用self.train(False). def eval(se原创 2021-05-14 01:44:54 · 4227 阅读 · 12 评论