自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 角色扮演大模型(RP-LLM)的深度技术剖析与演进

本报告深入解构了角色扮演大模型(RP-LLM)从通用模型中分化出的技术路径。不同于追求效率的“助手”模型,RP-LLM 旨在构建具备“拟人化”与“沉浸感”的数字生命。本文涵盖本体论基础、数据炼金术、认知架构设计及高性能推理工程,结合网易、Baichuan、Stanford 等前沿案例,绘制了一幅从“文本生成”到“硅基生命”的演进全景图。

2025-12-17 10:14:22 286

原创 测试集数据泄露问题:解析数据泄露及其治理机制

在参数规模突破万亿的大模型时代,评估基准(Benchmarks)的客观性正面临前所未有的挑战。当“刷榜”成为常态,高分背后的“数据泄露”问题逐渐浮出水面。本文基于前沿研究报告,从机理、检测到工程实践,深度剖析大模型如何通过“记忆”而非“推理”获取高分,并为开发者提供构建可信评估体系的工程指南。

2025-12-17 10:12:28 266

原创 大型语言模型推理范式演进:从提示工程到思维算法

本文系统梳理了大型语言模型推理范式的演进路径,从基础的零样本/少样本提示到思维链(CoT)、思维树(ToT)等结构化推理方法。通过定义解析、流程图解和实战案例,详细展示了不同范式在客服工单分类、医疗数据提取、法律合规审查等场景的应用效果。特别探讨了CoT自洽性(CoT-SC)等提升推理稳定性的工业级策略,为开发者提供了激发大模型复杂推理能力的实用指南。研究证明,合理的提示工程能显著提升模型在专业领域的逻辑推理和任务执行能力。

2025-12-16 09:54:22 485

原创 Vue 3 前端工程化:架构、核心原理与生产实践

Vue 3 前端工程化实践摘要 本报告聚焦 Vue 3 全栈开发体系,深入探讨现代前端工程化实践。重点内容包括: 架构设计:采用 pnpm 包管理器优化依赖管理,推荐 Feature-Sliced Design (FSD) 架构模式提升代码内聚性,通过模块化结构解决大型项目维护难题 构建优化:基于 Vite 深度配置生产环境,集成自动化导入、代码压缩和可视化分析工具,实现高效构建流程 状态管理:运用 Composition API 和 Pinia 管理复杂业务状态,构建可维护的应用逻辑 实战案例:以电商后台

2025-12-16 09:51:36 603

原创 深度解析 Angular:掌握组件、路由、RxJS 与工程化的融合之道

Angular v17+ 深度解析:现代组件化开发与工程实践 本文全面剖析现代Angular(v17+)的核心特性与技术架构。重点内容包括:1)Angular的演进与优势,对比React/Vue的"开箱即用"特性;2)新特性如独立组件(Standalone)、Signals响应式系统和改进的控制流语法;3)工程化实践,涵盖CLI工具链、项目结构和开发流程;4)组件化开发详解,包括生命周期、数据通信模式等。文章采用TypeScript强类型风格,强调现代Angular的性能优化和开发体验提

2025-12-15 14:30:42 652 1

原创 检索增强生成 (RAG) :从数据解析到代理式架构的深度工程实践

检索增强生成(RAG)技术实现了大语言模型从静态知识库到动态智能体的转变,成为企业级AI应用的核心架构。报告深度剖析了RAG的技术演进:从朴素RAG的线性流程到高级RAG的预检索/后检索优化,再到模块化RAG的灵活编排,最终发展为具备自主决策能力的代理式RAG。同时指出了生产环境中的四大挑战:非结构化数据解析、检索语义偏差、高质量负样本缺失和生成幻觉问题。在数据处理方面,重点介绍了PDF解析的视觉检测与坐标排序技术,通过布局分析和分栏处理解决文档语义完整性难题。报告为架构师提供了从理论到实践的全面指导。

2025-12-15 14:29:33 815

原创 超越 RAG: 构建具备“自我进化”能力的 Agentic Memory 系统

检索增强生成(RAG)让 AI 拥有了“图书馆”,可以查阅资料;而 Agentic Memory(代理记忆) 则赋予了 AI “海马体”,让它拥有了长期记忆、行为习惯和自我进化的能力。

2025-11-28 10:51:06 641

原创 Java 转 Python 速成指南:Java 视角下常用的 Python 特性

本文为Java开发者提供了快速掌握Python高阶特性的指南,重点针对LLM业务场景。主要内容包括:1)使用Pydantic进行数据校验和结构化(类似Java的POJO);2)利用Asyncio处理IO密集型并发任务(替代Java线程池);3)通过Generators实现流式响应处理;4)使用装饰器实现AOP切面编程(如API自动重试)。文章采用Java与Python对比的方式,帮助开发者快速理解Python在大模型开发中的最佳实践,如异步编程、类型注解和装饰器等核心特性。

2025-11-27 17:25:49 602

原创 深度解析 LlamaIndex:架构原理、RAG 范式演进与生产级落地全指南

本文深入探讨 LlamaIndex 作为“数据框架”的核心价值,剖析其从数据摄入到高级检索的完整链路,对比其与 LangChain 的架构差异,并提供 2025 年视角的生产环境选型与避坑指南。

2025-11-27 16:03:11 957

原创 智慧园区业务架构深度解析:本地化部署与云边端协同模式

摘要: 智慧园区业务架构正从“云端集中式”向“云边端协同”模式转型,以解决传统架构在带宽、时延、可靠性和数据安全方面的瓶颈。边缘计算(尤其是“厚边缘”模式)成为核心,通过本地闭环实现毫秒级响应和离线生存能力。云端负责全局管理与分析,边缘节点处理实时决策与异构协议融合,终端设备则执行感知与控制。关键技术包括MQTT/QoS通信保障、本地存储选型(如Redis/SQLite)及离线数据同步机制(如Merkle Tree)。典型应用如视频监控的“按需拉流”和智慧停车的离线优先架构,显著优化带宽并提升业务连续性。

2025-11-26 16:26:06 1682

原创 Web架构解剖学:从 Vue 到 Spring Boot 再到 K8s 的全链路深度解析

本文深入解析现代Web全链路架构,从开发环境到生产环境的差异出发,揭示前后端分离架构中的核心组件及其作用。开发环境中,前端依赖Node.js开发服务器,后端使用内置Tomcat容器;而生产环境需要Nginx托管前端静态资源并解决SPA路由问题,同时作为反向代理连接后端服务。后端Nginx则负责动静分离、负载均衡等关键任务。文章通过架构图和配置示例,清晰展示了各组件如何协同工作,帮助开发者理解从代码到线上服务的完整链路。

2025-11-26 10:25:46 616

原创 统一语境前沿:模型语境协议 (MCP) 的综合架构分析及其在智能体系统中的战略必要性

摘要:模型语境协议(MCP)为AI智能体系统提供标准化接口,解决传统函数调用的碎片化问题。MCP采用客户端-主机-服务器架构,通过资源、工具和提示三大原语实现被动语境标准化、主动执行封装和工作流优化。相比函数调用,MCP具有松散耦合、动态发现和安全隔离等优势,支持服务器端处理减少Token消耗,并支持采样、启发等高级智能体能力。该协议为构建下一代语境感知AI系统提供了关键架构基础,尤其适用于企业级复杂集成场景。

2025-11-25 11:29:42 741

原创 从“检索”到“认知”:基于 Agent 的 RAG 架构深度解析与生产实战

本文探讨了基于Agent的RAG架构如何突破传统RAG的局限性,实现从简单检索到认知推理的跃升。传统RAG面对复杂问题时存在检索粒度失效、推理能力缺失等痛点,而Agentic RAG通过三层架构(感知规划层、工具执行层、反思生成层)赋予系统思考能力。文章详细解析了Self-RAG、CRAG等进阶模式,并通过金融分析、编程助手等场景展示其优势。同时指出生产环境中的四大挑战:死循环、延迟爆炸、上下文污染和成本失控,并给出相应解决方案。这种架构使系统从"搜索引擎"进化为"答案引擎&q

2025-11-25 11:17:40 938

原创 深度解析:基于 RAG 与 LLM 的智能推荐系统架构设计

智能推荐系统架构设计:RAG与LLM的融合创新 本文深入解析了一套基于检索增强生成(RAG)和大语言模型(LLM)的智能推荐系统架构。该系统分为离线数据处理和在线推理两大流程:离线部分通过文档解析、规则提取和LLM特征工程构建知识库;在线部分则根据用户交互深度动态生成画像,结合向量检索实现个性化推荐。文章详细拆解了五个核心模块的设计思路,包括数据解析层、规则提取层、LLM特征工程层等,并提供了典型生产案例和工具栈建议。特别强调了LLM在特征工程中的关键作用,以及如何处理延迟等实际挑战。该架构通过融合传统推荐

2025-11-24 14:26:06 771

原创 WVP+ZLMediaKit流媒体实战:从园区千路接入到云端级联优化的全链路解析

本文深入解析了基于GB/T 28181协议的WVP+ZLMediaKit流媒体架构方案。该方案采用信令与媒体分离的设计理念,WVP负责SIP信令管理,ZLMediaKit处理视频流转发与协议转换。相比厂商SDK方案,该架构具有跨品牌兼容性强、Web支持友好等优势。针对千路并发场景,分析了网络带宽、CPU内存等关键瓶颈,并给出TCP被动模式等优化建议。在云边级联场景中,提出了按需拉流策略以降低流量成本。文章还揭示了时间戳异常等生产环境常见问题及解决方案,为大规模视频监控系统建设提供了实用参考。

2025-11-24 14:08:45 1257

原创 面向海量并发的云边端协同IoT架构研究:数据流向、网关内核与分布式状态管理

随着物联网(IoT)技术的飞速发展,连接规模已从简单的数万台设备跃升至数亿级海量并发。传统的单体架构已无法满足工业互联网、智慧城市及车联网等场景对低延迟、高可靠性及离线自治的严苛要求。“云-边-端”协同架构因此成为业界事实上的标准范式。本报告旨在对该架构进行详尽的技术解构,特别聚焦于华为IoTDA(IoT Device Access)、智能边缘平台(IEF)及EMQX等业界领先解决方案的架构设计。

2025-11-23 15:20:26 1127

原创 深度解析:AI 联网搜索(Search-based RAG)的生产级架构实践

本文深入探讨了AI联网搜索(Search-based RAG)的生产级架构实践。针对大语言模型的知识局限性,提出了一套包含广度检索、精度筛选、深度解析和知识增强的漏斗型解决方案。通过搜索引擎API获取初始结果后,利用语义评分筛选高相关URL,再通过爬虫和数据处理转换为模型友好的Markdown格式,最终结合RAG流程实现精准回答。文章详细拆解了各阶段技术实现,包括Cross-Encoder重排序、HTML清洗和Prompt组装等关键环节,并提供了实际案例说明。

2025-11-23 14:16:47 604

原创 构建企业级 RAG 知识库:从向量存储到全链路护栏

企业级RAG知识库构建指南:从向量存储到全链路安全 本文深入探讨构建企业级RAG知识库的关键要素,包括: 安全控制:通过权限校验和输入护栏防范恶意攻击 查询优化:利用上下文理解重写用户查询提升检索精度 混合检索:结合向量检索与关键词搜索提高召回率 存储方案:对比专用向量库、传统数据库扩展等不同选择 输出防护:设置护栏拦截不当回答并建立用户反馈闭环 文章通过多个行业案例和方案对比,为企业构建高可用知识库系统提供实用参考。

2025-11-22 10:45:41 822

原创 企业级大模型推理网关设计:混合部署与高可靠通信机制详解

本文详细介绍了企业级大模型推理网关的设计方案,重点解决多模型混合部署和高可靠通信问题。系统采用Controller-Worker主从架构,支持在线商业模型和离线开源模型混合部署,通过敏感路由、降本路由和能力路由策略实现智能调度。核心创新在于异步回调存储机制,由Worker直接完成数据持久化,确保即使在网络中断情况下也能保证数据一致性。同时,通过协议清洗实现统一流式响应接口,简化前端开发。该架构有效平衡了企业级应用在成本、安全和稳定性方面的需求,为商业级RAG系统提供了可靠基础。

2025-11-22 10:44:35 1202

原创 高性能 RAG 架构实战:从数据工程到 Agent 的全链路落地与工具选型

V1 版本:解决了“有”的问题(存进去,取出来)。V2 版本:解决了“准”的问题(PDF 解析优化、Re-rank)。V3 版本:解决了“新”的问题(联网搜索)。V4 版本:解决了“智”的问题(Agent 推理、主动推荐)。通过合理组合等生产级工具,我们才能构建出一个真正可用的企业级知识库。

2025-11-21 10:46:36 911

原创 生产级 RAG 系统构建:LangChain 实践、案例与优劣分析

从 Demo 到生产,RAG 的瓶颈通常不在 LLM 本身,而在数据工程(Data Engineering)和检索策略(Retrieval Strategy)。初期:用 LangChain 默认组件快速跑通。中期:引入混合检索、重排序和元数据过滤,解决准确率问题。后期:针对特定数据格式(如表格、PDF)定制 Loader 和 Chunking 策略,建立完善的评估(Eval)体系。

2025-11-21 10:27:54 687

原创 Agent Prompt 工程指南 :从定义到自动化优化的生产级实践

一个健壮的 Agent 系统,其 Prompt 是模块化的。我们需要针对System(系统层)Planner(规划层)Executor(执行层)和Reflector(反思层)分别定义指令。这是 Agent 的“宪法”。在生产中,单纯的“你是一个助手”是无效的,必须包含任务目标行为约束和输出协议。优化策略:使用XML 标签隔离上下文,防止指令漂移。生产级示例(SQL 数据分析 Agent)<role>你是一个资深的数据仓库专家(Data Warehouse Specialist)。

2025-11-20 14:15:16 902

原创 AI Agent 工程化指南:架构设计、规划模式与生产实践

构建生产级 Agent 系统,本质上是从“提示词工程(Prompt Engineering)”向“智能体工程(Agent Engineering)”的跨越。确定性与灵活性的平衡:核心业务流程使用 Flow Engineering 固化,边缘探索任务交给 ReAct 泛化。错误即资源:设计完善的反馈回路,将运行时错误转化为模型修正的上下文,而非简单的异常抛出。可观测性:建立完整的 Trace 链路(如 LangSmith),确保 Agent 的每一次思考和行动都可追溯、可分析。

2025-11-20 14:04:16 1243

原创 从“直觉反应”到“自主思考”:LangChain 开发范式的三次跃迁

从面向 LLM到面向 Chain,再到面向 Agent,本质上是我们对 AI信任度LLM 时代:我们把 AI 当作一支笔。Chain 时代:我们把 AI 当作流水线上的工人。Agent 时代:我们把 AI 当作合作伙伴,只给目标,不问过程。随着LangGraph等新一代编排工具的出现,未来的 Agent 将具备更强的状态管理能力和多智能体协作能力,真正实现从“辅助工具”到“智能生产力”的跨越。

2025-11-19 22:36:38 618

原创 LangChain Agent 生产环境架构的经典挑战与应对策略

将 LangChain Agent 推向生产环境,本质上是从“提示词工程(Prompt Engineering)”向“软件工程(Software Engineering)”的跨越。维度Demo 阶段Production 阶段稳定性依赖运气依赖 Pydantic 校验与重试机制流程控制简单循环状态机 (LangGraph) + 熔断体验等待 Loading全链路流式 (Streaming)调试Print 打印分布式追踪 (Tracing)不要指望一个通用的能解决所有问题。

2025-11-19 18:15:17 661

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除