- 博客(2)
- 收藏
- 关注
原创 GAN网络和DCGAN网络
GAN GAN=生成网络+判别网络 基本原理是优化损失函数:minGmaxDV(D,G)=Ex∼pdata(x)[log(D(x))]+Ez∼pz(z)[log(1−D(G(z)))],训练目标:可以自动的学习原始真实样本集的数据分布。 优化步骤: 选出假样本{z1,z2,...zn},同时选出和假样本一样数量的真样本{x1,x2,...x3} 训练判别器D,求出损失函数对于D中参数的梯...
2019-01-08 17:13:02 758
原创 Tensorflow实现图像风格迁移
原理部分 我所理解的图像风格迁移基本原理: 总损失=内容损失+风格损失 快速图像风格迁移基本原理: 实践部分 实践快速图像风格迁移的步骤 图像生成网络在model.py中定义,其原理主要是对图像进行卷积计算,然后在进行”反卷积计算“ 损失网络只需要在训练过程中学会怎么引用即可(其引用配置写在conf/文件夹下的配置文件中) 定义好图像生成网络和损失网络后,在train...
2019-01-08 10:35:35 1201
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人