PLEG is not healthy

目录

前言

01 PLEG 是个啥?

02 PLEG is not healthy 是如何发生的?

03 深入解读 relist 函数

04 监控 relist

05 总结

06 补充 (k8s node节点notReady解决方法)

06 参考资料

脚注



前言

在 Kubernetes 社区中,PLEG is not healthy 成名已久,只要出现这个报错,就有很大概率造成 Node 状态变成 NotReady。社区相关的 issue 也有一大把,先列几个给你们看看:

  • https://stackoverflow.com/questions/53872739/how-to-fix-container-runtime-is-down-pleg-is-not-healthy[1]
  • https://github.com/kubernetes/kubernetes/issues/45419[2]
  • https://github.com/kubernetes/kubernetes/issues/61117[3]
  • https://github.com/kubernetes/kubernetes/issues/72533[4]
  • https://github.com/Azure/AKS/issues/102[5]

本文我将尝试解释 PLEG 的工作原理,只要理解了工作原理,再遇到类似的问题就有排查思路了。

01 PLEG 是个啥?

PLEG 全称叫 Pod Lifecycle Event Generator,即 Pod 生命周期事件生成器。实际上它只是 Kubelet 中的一个模块,主要职责就是通过每个匹配的 Pod 级别事件来调整容器运行时的状态,并将调整的结果写入缓存,使 Pod 的缓存保持最新状态。先来聊聊 PLEG 的出现背景。

在 Kubernetes 中,每个节点上都运行着一个守护进程 Kubelet 来管理节点上的容器,调整容器的实际状态以匹配 spec 中定义的状态。具体来说,Kubelet 需要对两个地方的更改做出及时的回应:

  1. Pod spec 中定义的状态
  2. 容器运行时的状态

对于 Pod,Kubelet 会从多个数据来源 watch Pod spec 中的变化。对于容器,Kubelet 会定期(例如,10s)轮询容器运行时,以获取所有容器的最新状态。

随着 Pod 和容器数量的增加,轮询会产生不可忽略的开销,并且会由于 Kubelet 的并行操作而加剧这种开销(为每个 Pod 分配一个 goruntine,用来获取容器的状态)。轮询带来的周期性大量并发请求会导致较高的 CPU 使用率峰值(即使 Pod 的定义和容器的状态没有发生改变),降低性能。最后容器运行时可能不堪重负,从而降低系统的可靠性,限制 Kubelet 的可扩展性。

为了降低 Pod 的管理开销,提升 Kubelet 的性能和可扩展性,引入了 PLEG,改进了之前的工作方式:

  • 减少空闲期间的不必要工作(例如 Pod 的定义和容器的状态没有发生更改)。
  • 减少获取容器状态的并发请求数量。

整体的工作流程如下图所示,虚线部分是 PLEG 的工作内容。

02 PLEG is not healthy 是如何发生的?

Healthy() 函数会以 “PLEG” 的形式添加到 runtimeState 中,Kubelet 在一个同步循环(SyncLoop() 函数)中会定期(默认是 10s)调用 Healthy() 函数。Healthy() 函数会检查 relist 进程(PLEG 的关键任务)是否在 3 分钟内完成。如果 relist 进程的完成时间超过了 3 分钟,就会报告 PLEG is not healthy

我会在流程的每一步通过源代码解释其相关的工作原理,源代码基于 Kubernetes 1.11(Openshift 3.11)。如果你不熟悉 Go 的语法也不用担心,只需要看代码中的注释就能明白其原理。我也会在放出代码之前先解读一番,并从源代码中裁剪掉不太重要的内容以提高代码的可读性。下面是调用 healthy() 函数的相关代码:
 

pkg/kubelet/pleg/generic.go - Healthy()
 
// The threshold needs to be greater than the relisting period + the
// relisting time, which can vary significantly. Set a conservative
// threshold to avoid flipping between healthy and unhealthy.
relistThreshold = 3 * time.Minute
:
func (g *GenericPLEG) Healthy() (bool, error) {
  relistTime := g.getRelistTime()
  elapsed := g.clock.Since(relistTime)
  if elapsed > relistThreshold {
    return false, fmt.Errorf("pleg was last seen active %v ago; threshold is %v", elapsed, relistThreshold)
  }
  return true, nil
}
 
 pkg/kubelet/kubelet.go - NewMainKubelet()
func NewMainKubelet(kubeCfg *kubeletconfiginternal.KubeletConfiguration, ...
:
  klet.runtimeState.addHealthCheck("PLEG", klet.pleg.Healthy)
 
 pkg/kubelet/kubelet.go - syncLoop()
func (kl *Kubelet) syncLoop(updates <-chan kubetypes.PodUpdate, handler SyncHandler) {
:
// The resyncTicker wakes up kubelet to checks if there are any pod workers
// that need to be sync'd. A one-second period is sufficient because the
// sync interval is defaulted to 10s.
:
  const (
    base   = 100 * time.Millisecond
    max    = 5 * time.Second
    factor = 2
  )
  duration := base
  for {
      if rs := kl.runtimeState.runtimeErrors(); len(rs) != 0 {
          glog.Infof("skipping pod synchronization - %v", rs)
          // exponential backoff
          time.Sleep(duration)
          duration = time.Duration(math.Min(float64(max), factor*float64(duration)))
          continue
      }
    :
  }
:
}
 
 pkg/kubelet/runtime.go - runtimeErrors()
func (s *runtimeState) runtimeErrors() []string {
:
    for _, hc := range s.healthChecks {
        if ok, err := hc.fn(); !ok {
            ret = append(ret, fmt.Sprintf("%s is not healthy: %v", hc.name, err))
        }
    }
:
}

03 深入解读 relist 函数

上文提到 healthy() 函数会检查 relist 的完成时间,但 relist 究竟是用来干嘛的呢?解释 relist 之前,要先解释一下 Pod 的生命周期事件。Pod 的生命周期事件是在 Pod 层面上对底层容器状态改变的抽象,使其与底层的容器运行时无关,这样就可以让 Kubelet 不受底层容器运行时的影响。
 

type PodLifeCycleEventType string
 
const (
    ContainerStarted      PodLifeCycleEventType = "ContainerStarted"
    ContainerStopped      PodLifeCycleEventType = "ContainerStopped"
    NetworkSetupCompleted PodLifeCycleEventType = "NetworkSetupCompleted"
    NetworkFailed         PodLifeCycleEventType = "NetworkFailed"
)
 
// PodLifecycleEvent is an event reflects the change of the pod state.
type PodLifecycleEvent struct {
    // The pod ID.
    ID types.UID
    // The type of the event.
    Type PodLifeCycleEventType
    // The accompanied data which varies based on the event type.
    Data interface{}
}

以 Docker 为例,在 Pod 中启动一个 infra 容器就会在 Kubelet 中注册一个 NetworkSetupCompleted Pod 生命周期事件。

那么 PLEG 是如何知道新启动了一个 infra 容器呢?它会定期重新列出节点上的所有容器(例如 docker ps),并与上一次的容器列表进行对比,以此来判断容器状态的变化。其实这就是 relist() 函数干的事情,尽管这种方法和以前的 Kubelet 轮询类似,但现在只有一个线程,就是 PLEG。现在不需要所有的线程并发获取容器的状态,只有相关的线程会被唤醒用来同步容器状态。而且 relist 与容器运行时无关,也不需要外部依赖,简直完美。

下面我们来看一下 relist() 函数的内部实现。完整的流程如下图所示:

注意图中的 RPC 调用部分,后文将会拎出来详细解读。完整的源代码在这里[6]。

尽管每秒钟调用一次 relist,但它的完成时间仍然有可能超过 1s。因为下一次调用 relist 必须得等上一次 relist 执行结束,设想一下,如果容器运行时响应缓慢,或者一个周期内有大量的容器状态发生改变,那么 relist 的完成时间将不可忽略,假设是 5s,那么下一次调用 relist 将要等到 6s 之后。

相关的源代码如下:

pkg/kubelet/kubelet.go - NewMainKubelet()
 
// Generic PLEG relies on relisting for discovering container events.
// A longer period means that kubelet will take longer to detect container
// changes and to update pod status. On the other hand, a shorter period
// will cause more frequent relisting (e.g., container runtime operations),
// leading to higher cpu usage.
// Note that even though we set the period to 1s, the relisting itself can
// take more than 1s to finish if the container runtime responds slowly
// and/or when there are many container changes in one cycle.
plegRelistPeriod = time.Second * 1
 
// NewMainKubelet instantiates a new Kubelet object along with all the required internal modules.
// No initialization of Kubelet and its modules should happen here.
func NewMainKubelet(kubeCfg *kubeletconfiginternal.KubeletConfiguration, ...
:
  klet.pleg = pleg.NewGenericPLEG(klet.containerRuntime, plegChannelCapacity, plegRelistPeriod, klet.podCache, clock.RealClock{})
 
 pkg/kubelet/pleg/generic.go - Start()
 
// Start spawns a goroutine to relist periodically.
func (g *GenericPLEG) Start() {
  go wait.Until(g.relist, g.relistPeriod, wait.NeverStop)
}
 
 pkg/kubelet/pleg/generic.go - relist()
func (g *GenericPLEG) relist() {
... WE WILL REVIEW HERE ...
}

 回到上面那幅图,relist 函数第一步就是记录 Kubelet 的相关指标(例如 kubelet_pleg_relist_latency_microseconds),然后通过 CRI 从容器运行时获取当前的 Pod 列表(包括停止的 Pod)。该 Pod 列表会和之前的 Pod 列表进行比较,检查哪些状态发生了变化,然后同时生成相关的 Pod 生命周期事件和更改后的状态

 pkg/kubelet/pleg/generic.go - relist()
  :
  // get a current timestamp
  timestamp := g.clock.Now()
 
  // kubelet_pleg_relist_latency_microseconds for prometheus metrics
    defer func() {
        metrics.PLEGRelistLatency.Observe(metrics.SinceInMicroseconds(timestamp))
    }()
 
  // Get all the pods.
    podList, err := g.runtime.GetPods(true)
  :

其中 GetPods() 函数的调用堆栈如下图所示:

相关的源代码如下:

pkg/kubelet/kuberuntime/kuberuntime_manager.go - GetPods()
 
// GetPods returns a list of containers grouped by pods. The boolean parameter
// specifies whether the runtime returns all containers including those already
// exited and dead containers (used for garbage collection).
func (m *kubeGenericRuntimeManager) GetPods(all bool) ([]*kubecontainer.Pod, error) {
    pods := make(map[kubetypes.UID]*kubecontainer.Pod)
    sandboxes, err := m.getKubeletSandboxes(all)
:
}
 
 pkg/kubelet/kuberuntime/kuberuntime_sandbox.go - getKubeletSandboxes()
 
// getKubeletSandboxes lists all (or just the running) sandboxes managed by kubelet.
func (m *kubeGenericRuntimeManager) getKubeletSandboxes(all bool) ([]*runtimeapi.PodSandbox, error) {
:
    resp, err := m.runtimeService.ListPodSandbox(filter)
:
}
 
 pkg/kubelet/remote/remote_runtime.go - ListPodSandbox()
 
// ListPodSandbox returns a list of PodSandboxes.
func (r *RemoteRuntimeService) ListPodSandbox(filter *runtimeapi.PodSandboxFilter) ([]*runtimeapi.PodSandbox, error) {
:
    resp, err := r.runtimeClient.ListPodSandbox(ctx, &runtimeapi.ListPodSandboxRequest{
:
    return resp.Items, nil
}

 获取所有的 Pod 列表后,relist 的完成时间就会更新成当前的时间戳。也就是说,Healthy() 函数可以根据这个时间戳来评估 relist 是否超过了 3 分钟。

 pkg/kubelet/pleg/generic.go - relist()
 
  // update as a current timestamp
  g.updateRelistTime(timestamp)

将当前的 Pod 列表和上一次 relist 的 Pod 列表进行对比之后,就会针对每一个变化生成相应的 Pod 级别的事件。相关的源代码如下:

 pkg/kubelet/pleg/generic.go - relist()
 
  pods := kubecontainer.Pods(podList)
  g.podRecords.setCurrent(pods)
 
  // Compare the old and the current pods, and generate events.
  eventsByPodID := map[types.UID][]*PodLifecycleEvent{}
  for pid := range g.podRecords {
    oldPod := g.podRecords.getOld(pid)
    pod := g.podRecords.getCurrent(pid)
 
    // Get all containers in the old and the new pod.
    allContainers := getContainersFromPods(oldPod, pod)
    for _, container := range allContainers {
          events := computeEvents(oldPod, pod, &container.ID)
 
          for _, e := range events {
                updateEvents(eventsByPodID, e)
          }
        }
  }

其中 generateEvents() 函数(computeEvents() 函数会调用它)用来生成相应的 Pod 级别的事件(例如 ContainerStarted、ContainerDied 等等),然后通过 updateEvents() 函数来更新事件。

computeEvents() 函数的内容如下:
 

 pkg/kubelet/pleg/generic.go - computeEvents()
 
func computeEvents(oldPod, newPod *kubecontainer.Pod, cid *kubecontainer.ContainerID) []*PodLifecycleEvent {
:
    return generateEvents(pid, cid.ID, oldState, newState)
}
 
 pkg/kubelet/pleg/generic.go - generateEvents()
 
func generateEvents(podID types.UID, cid string, oldState, newState plegContainerState) []*PodLifecycleEvent {
:
    glog.V(4).Infof("GenericPLEG: %v/%v: %v -> %v", podID, cid, oldState, newState)
    switch newState {
    case plegContainerRunning:
      return []*PodLifecycleEvent{{ID: podID, Type: ContainerStarted, Data: cid}}
    case plegContainerExited:
      return []*PodLifecycleEvent{{ID: podID, Type: ContainerDied, Data: cid}}
    case plegContainerUnknown:
      return []*PodLifecycleEvent{{ID: podID, Type: ContainerChanged, Data: cid}}
    case plegContainerNonExistent:
      switch oldState {
      case plegContainerExited:
        // We already reported that the container died before.
        return []*PodLifecycleEvent{{ID: podID, Type: ContainerRemoved, Data: cid}}
      default:
        return []*PodLifecycleEvent{{ID: podID, Type: ContainerDied, Data: cid}, {ID: podID, Type: ContainerRemoved, Data: cid}}
      }
    default:
      panic(fmt.Sprintf("unrecognized container state: %v", newState))
  }
}

relist 的最后一个任务是检查是否有与 Pod 关联的事件,并按照下面的流程更新 podCache

pkg/kubelet/pleg/generic.go - relist()
 
  // If there are events associated with a pod, we should update the
  // podCache.
  for pid, events := range eventsByPodID {
    pod := g.podRecords.getCurrent(pid)
    if g.cacheEnabled() {
      // updateCache() will inspect the pod and update the cache. If an
      // error occurs during the inspection, we want PLEG to retry again
      // in the next relist. To achieve this, we do not update the
      // associated podRecord of the pod, so that the change will be
      // detect again in the next relist.
      // TODO: If many pods changed during the same relist period,
      // inspecting the pod and getting the PodStatus to update the cache
      // serially may take a while. We should be aware of this and
      // parallelize if needed.
      if err := g.updateCache(pod, pid); err != nil {
        glog.Errorf("PLEG: Ignoring events for pod %s/%s: %v", pod.Name, pod.Namespace, err)
        :
      }
      :
    }
    // Update the internal storage and send out the events.
    g.podRecords.update(pid)
    for i := range events {
      // Filter out events that are not reliable and no other components use yet.
      if events[i].Type == ContainerChanged {
           continue
      }
      g.eventChannel <- events[i]
     }
  }

updateCache() 将会检查每个 Pod,并在单个循环中依次对其进行更新。因此,如果在同一个 relist 中更改了大量的 Pod,那么 updateCache 过程将会成为瓶颈。最后,更新后的 Pod 生命周期事件将会被发送到 eventChannel。

某些远程客户端还会调用每一个 Pod 来获取 Pod 的 spec 定义信息,这样一来,Pod 数量越多,延时就可能越高,因为 Pod 越多就会生成越多的事件。

updateCache() 的详细调用堆栈如下图所示,其中 GetPodStatus() 用来获取 Pod 的 spec 定义信息:

完整的代码如下:

 pkg/kubelet/pleg/generic.go - updateCache()
 
func (g *GenericPLEG) updateCache(pod *kubecontainer.Pod, pid types.UID) error {
:
    timestamp := g.clock.Now()
    // TODO: Consider adding a new runtime method
    // GetPodStatus(pod *kubecontainer.Pod) so that Docker can avoid listing
    // all containers again.
    status, err := g.runtime.GetPodStatus(pod.ID, pod.Name, pod.Namespace)
  :
    g.cache.Set(pod.ID, status, err, timestamp)
    return err
}
 
 pkg/kubelet/kuberuntime/kuberuntime_manager.go - GetPodStatus()
 
// GetPodStatus retrieves the status of the pod, including the
// information of all containers in the pod that are visible in Runtime.
func (m *kubeGenericRuntimeManager) GetPodStatus(uid kubetypes.UID, name, namespace string) (*kubecontainer.PodStatus, error) {
  podSandboxIDs, err := m.getSandboxIDByPodUID(uid, nil)
  :
    for idx, podSandboxID := range podSandboxIDs {
        podSandboxStatus, err := m.runtimeService.PodSandboxStatus(podSandboxID)
    :
    }
 
    // Get statuses of all containers visible in the pod.
    containerStatuses, err := m.getPodContainerStatuses(uid, name, namespace)
  :
}
 
 pkg/kubelet/kuberuntime/kuberuntime_sandbox.go - getSandboxIDByPodUID()
 
// getPodSandboxID gets the sandbox id by podUID and returns ([]sandboxID, error).
// Param state could be nil in order to get all sandboxes belonging to same pod.
func (m *kubeGenericRuntimeManager) getSandboxIDByPodUID(podUID kubetypes.UID, state *runtimeapi.PodSandboxState) ([]string, error) {
  :
  sandboxes, err := m.runtimeService.ListPodSandbox(filter)
  :
  return sandboxIDs, nil
}
 
 pkg/kubelet/remote/remote_runtime.go - PodSandboxStatus()
 
// PodSandboxStatus returns the status of the PodSandbox.
func (r *RemoteRuntimeService) PodSandboxStatus(podSandBoxID string) (*runtimeapi.PodSandboxStatus, error) {
    ctx, cancel := getContextWithTimeout(r.timeout)
    defer cancel()
 
    resp, err := r.runtimeClient.PodSandboxStatus(ctx, &runtimeapi.PodSandboxStatusRequest{
        PodSandboxId: podSandBoxID,
    })
  :
    return resp.Status, nil
}
 
 pkg/kubelet/kuberuntime/kuberuntime_container.go - getPodContainerStatuses()
 
// getPodContainerStatuses gets all containers' statuses for the pod.
func (m *kubeGenericRuntimeManager) getPodContainerStatuses(uid kubetypes.UID, name, namespace string) ([]*kubecontainer.ContainerStatus, error) {
  // Select all containers of the given pod.
  containers, err := m.runtimeService.ListContainers(&runtimeapi.ContainerFilter{
    LabelSelector: map[string]string{types.KubernetesPodUIDLabel: string(uid)},
  })
  :
  // TODO: optimization: set maximum number of containers per container name to examine.
  for i, c := range containers {
    status, err := m.runtimeService.ContainerStatus(c.Id)
    :
  }
  :
  return statuses, nil
}

上面就是 relist() 函数的完整调用堆栈,我在讲解的过程中结合了相关的源代码,希望能为你提供有关 PLEG 的更多细节。为了实时了解 PLEG 的健康状况,最好的办法就是监控 relist。

04 监控 relist

我们可以通过监控 Kubelet 的指标来了解 relist 的延时。relist 的调用周期是 1s,那么 relist 的完成时间 + 1s 就等于 kubelet_pleg_relist_interval_microseconds 指标的值。你也可以监控容器运行时每个操作的延时,这些指标在排查故障时都能提供线索。

你可以在每个节点上通过访问 URL https://127.0.0.1:10250/metrics 来获取 Kubelet 的指标。

# HELP kubelet_pleg_relist_interval_microseconds Interval in microseconds between relisting in PLEG.
# TYPE kubelet_pleg_relist_interval_microseconds summary
kubelet_pleg_relist_interval_microseconds{quantile="0.5"} 1.054052e+06
kubelet_pleg_relist_interval_microseconds{quantile="0.9"} 1.074873e+06
kubelet_pleg_relist_interval_microseconds{quantile="0.99"} 1.126039e+06
kubelet_pleg_relist_interval_microseconds_count 5146
 
# HELP kubelet_pleg_relist_latency_microseconds Latency in microseconds for relisting pods in PLEG.
# TYPE kubelet_pleg_relist_latency_microseconds summary
kubelet_pleg_relist_latency_microseconds{quantile="0.5"} 53438
kubelet_pleg_relist_latency_microseconds{quantile="0.9"} 74396
kubelet_pleg_relist_latency_microseconds{quantile="0.99"} 115232
kubelet_pleg_relist_latency_microseconds_count 5106
 
# HELP kubelet_runtime_operations Cumulative number of runtime operations by operation type.
# TYPE kubelet_runtime_operations counter
kubelet_runtime_operations{operation_type="container_status"} 472
kubelet_runtime_operations{operation_type="create_container"} 93
kubelet_runtime_operations{operation_type="exec"} 1
kubelet_runtime_operations{operation_type="exec_sync"} 533
kubelet_runtime_operations{operation_type="image_status"} 579
kubelet_runtime_operations{operation_type="list_containers"} 10249
kubelet_runtime_operations{operation_type="list_images"} 782
kubelet_runtime_operations{operation_type="list_podsandbox"} 10154
kubelet_runtime_operations{operation_type="podsandbox_status"} 315
kubelet_runtime_operations{operation_type="pull_image"} 57
kubelet_runtime_operations{operation_type="remove_container"} 49
kubelet_runtime_operations{operation_type="run_podsandbox"} 28
kubelet_runtime_operations{operation_type="start_container"} 93
kubelet_runtime_operations{operation_type="status"} 1116
kubelet_runtime_operations{operation_type="stop_container"} 9
kubelet_runtime_operations{operation_type="stop_podsandbox"} 33
kubelet_runtime_operations{operation_type="version"} 564
 
# HELP kubelet_runtime_operations_latency_microseconds Latency in microseconds of runtime operations. Broken down by operation type.
# TYPE kubelet_runtime_operations_latency_microseconds summary
kubelet_runtime_operations_latency_microseconds{operation_type="container_status",quantile="0.5"} 12117
kubelet_runtime_operations_latency_microseconds{operation_type="container_status",quantile="0.9"} 26607
kubelet_runtime_operations_latency_microseconds{operation_type="container_status",quantile="0.99"} 27598
kubelet_runtime_operations_latency_microseconds_count{operation_type="container_status"} 486
kubelet_runtime_operations_latency_microseconds{operation_type="list_containers",quantile="0.5"} 29972
kubelet_runtime_operations_latency_microseconds{operation_type="list_containers",quantile="0.9"} 47907
kubelet_runtime_operations_latency_microseconds{operation_type="list_containers",quantile="0.99"} 80982
kubelet_runtime_operations_latency_microseconds_count{operation_type="list_containers"} 10812
kubelet_runtime_operations_latency_microseconds{operation_type="list_podsandbox",quantile="0.5"} 18053
kubelet_runtime_operations_latency_microseconds{operation_type="list_podsandbox",quantile="0.9"} 28116
kubelet_runtime_operations_latency_microseconds{operation_type="list_podsandbox",quantile="0.99"} 68748
kubelet_runtime_operations_latency_microseconds_count{operation_type="list_podsandbox"} 10712
kubelet_runtime_operations_latency_microseconds{operation_type="podsandbox_status",quantile="0.5"} 4918
kubelet_runtime_operations_latency_microseconds{operation_type="podsandbox_status",quantile="0.9"} 15671
kubelet_runtime_operations_latency_microseconds{operation_type="podsandbox_status",quantile="0.99"} 18398
kubelet_runtime_operations_latency_microseconds_count{operation_type="podsandbox_status"} 323

 可以通过 Prometheus 对其进行监控:

05 总结

以我的经验,造成 PLEG is not healthy 的因素有很多,而且我相信还有更多潜在的因素我们还没有遇到过。我只提供几个我能想到的原因:

RPC 调用过程中容器运行时响应超时(有可能是性能下降,死锁或者出现了 bug)。

节点上的 Pod 数量太多,导致 relist 无法在 3 分钟内完成。事件数量和延时与 Pod 数量成正比,与节点资源无关。

relist 出现了死锁[7],该 bug 已在 Kubernetes 1.14 中修复。

获取 Pod 的网络堆栈信息时 CNI 出现了 bug。

06 补充 (k8s node节点notReady解决方法)

如果k8s集群出现这个问题的现象就是节点状态处于 NotReady 

解决方法就是: 

# 1 The workaround here is to prune stopped or dead containers to reduce the message size.
 docker system prune

# 2 restart kubelet
 systemctl restart kubelet.service

-------------

Tip:
# 该命令可以用于清理磁盘,删除关闭的容器、无用的数据卷和网络,以及dangling镜像(即无tag的镜像)
docker system prune 

# 该命令清理得更加彻底,可以将没有容器使用Docker镜像都删掉
docker system prune -a 

06 参考资料

Kubelet: Pod Lifecycle Event Generator (PLEG)[8]

Kubelet: Runtime Pod Cache[9]

relist() in kubernetes/pkg/kubelet/pleg/generic.go[10]

Past bug about CNI — PLEG is not healthy error, node marked NotReady[11]
 

脚注

---------
[1] https://stackoverflow.com/questions/53872739/how-to-fix-container-runtime-is-down-pleg-is-not-healthy: https://stackoverflow.com/questions/53872739/how-to-fix-container-runtime-is-down-pleg-is-not-healthy

[2] https://github.com/kubernetes/kubernetes/issues/45419: https://github.com/kubernetes/kubernetes/issues/45419

[3] https://github.com/kubernetes/kubernetes/issues/61117: https://github.com/kubernetes/kubernetes/issues/61117

[4] https://github.com/kubernetes/kubernetes/issues/72533: https://github.com/kubernetes/kubernetes/issues/72533

[5] https://github.com/Azure/AKS/issues/102: https://github.com/Azure/AKS/issues/102

[6] https://github.com/openshift/origin/blob/release-3.11/vendor/k8s.io/kubernetes/pkg/kubelet/pleg/generic.go#L180-L284

[7] relist 出现了死锁: https://github.com/kubernetes/kubernetes/issues/72482

[8] Kubelet: Pod Lifecycle Event Generator (PLEG): https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/pod-lifecycle-event-generator.md

[9] Kubelet: Runtime Pod Cache: https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/runtime-pod-cache.md

[10] relist() in kubernetes/pkg/kubelet/pleg/generic.go: https://github.com/openshift/origin/blob/release-3.11/vendor/k8s.io/kubernetes/pkg/kubelet/pleg/generic.go#L180-L284

[11] Past bug about CNI — PLEG is not healthy error, node marked NotReady: https://bugzilla.redhat.com/show_bug.cgi?id=1486914#c16
————————————————

原文链接:https://blog.csdn.net/alex_yangchuansheng/article/details/103360214

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值