一元函数微分学与多元函数微分学的对比学习

一元函数微分学与多元函数微分学的对比学习
摘要由CSDN通过智能技术生成

本篇主要记录一元与多元微分中的导数与微分的类比学习

一元微分

导数与微分

导数(derivative): 实际上导数是一种特殊的极限,其意义是指函数值在某点的变化率(aka.斜率,tangent line)
lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim\limits_{x\rightarrow x_0} \cfrac{f(x) - f(x_0)}{x-x_0} xx0limxx0f(x)f(x0)
微分(differential):微分的实质是将不均匀变化的函数用均匀的方式表示,其意义是指函数改变量近似值
可微的定义:
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = A Δ x + o ( Δ x ) \Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x) Δy=f(x0+Δx)f(x0)=AΔx+o(Δx) 即   d y = A Δ x 即~dy = A\Delta x  dy=AΔx
graphic  understanding : \large \text {graphic~ understanding}: graphic  understanding:
在这里插入图片描述
我们不难发现在上述公式中,我们把一个非均匀变化的函数用线性的方式 ( A Δ x + o ( x ) ) \Big(A\Delta x + o(x)\Big) (AΔx+o(x))近似表示出来了,可能你会有疑问 ‘这 A Δ x 和 o ( x ) A\Delta x 和 o(x) AΔxo(x)是个啥?怎么就表示出来了?’ 别急马上揭晓,我们的目的是用线性的方式表达函数的改变量 Δ y \Delta y Δy,公式中   A Δ x   ~A\Delta x~  AΔx    f ( x )   ~f(x)~  f(x) 线性主要部分( 1 ^1 1线性 2 ^2 2主部),既然有主部那当然就会有次要部分即 o ( Δ x ) o(\Delta x) o(Δx) o ( Δ x ) = Δ y − d y o(\Delta x) = \Delta y - dy o(Δx)=Δydy是在 Δ x → 0 \Delta x\rightarrow 0 Δx0时可以忽略的高阶无穷小部分。
我们说回到   A Δ x   ~A\Delta x~  AΔx ,当中的 A A A其实就是 tan ⁡ α \tan\alpha tanα,而导数 f ′ ( x 0

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值