用快速幂的方法求组合数


题目链接🔗

需要用到的知识

  • 组合数
    其中:C(m,n) = n! / (m!*(n-m)!) //默认n>m
    在这里插入图片描述

  • 判断一个数是否是奇数:if( n&1 )
    其中:n为奇数 // 奇数2进制末位为1,1与1进行与运算结果为1;

  • 拓展
    n>>=1 右移1位 除以2;

    n<<=1 左移1位 乘以2;

  • 费马小定理
    费马小定理:假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)
    所以a*a^(p-2)≡1(mod p)
    得出:a^(p-2)就是a的乘法逆元
    利用快速幂可以计算出a^(p-2)

  • 快速幂

    ll quick_pow(ll x,ll n,ll mod)
    {
        ll res=1;
        while( n ){
            if(n & 1) {
                res = res * x % mod;
            }
            x = x * x % mod;
            n >>= 1;
        }
        return res;
    }
  • 费马小定理和快速幂求解组合数
#include <bits/stdc++.h>
using namespace std;
#define rep(x,l,u) for(ll x=l;x<u;x++)
#define rrep(x,l,u) for(ll x=l;x<=u;x++)
const ll maxn = 150005;
const ll p = 998244353
typedef long long ll;
ll fac[2*maxn+5];
int main()
{
    ll quick_pow(ll x,ll n){
        ll res = 1;
        while(n){
            if( n&1 ) res = res * x % p;
            x = x * x % p;
            n >>= 1;
        }
        return res;

    }
    void s(){
        fac[0] = 1;
        rrep(i,0,n) fac[i] = fac[i-1] * i % p;  //注意不能少mod
        return fac[n] * quick_pow(fac[m],p-2) % p * quick_pow(fac[n-m],p-2) % p;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值