Codeforces Round #727 (Div. 2)

https://codeforc.es/contest/1541

cf

a

题意: n 、 x 、 t n、x、 t nxt三个数。
有n个人,每个人工作 t t t
第一个人从 0 0 0开始,
第二人从 x x x开始,
第三个人从 2 x 2x 2x开始,
一直到 ( n − 1 ) x (n-1)x (n1)x开始。
如果一个人工作结束之前(含结束时)有 y y y人在工作,那么这个人的不满意度是 y y y,求所有的不满意度之和。
题解:数据给大了,只能 O ( n ) O(n) O(n)
注意:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

void solve()
{
    ll a,b,c;
    cin >> a >> b >> c;
    a--;
    ll m=c/b;
    if(a<=m)
    {
        cout << a*(a+1)/2;
    }
    else
        cout << m*(m+1)/2 + (a-m)*m << endl;
}


int main(){
    int t; cin >> t;
    while(t--)
        solve();
    return 0;
}

b

有手就行,可惜我的手不太灵活,数据给的范围其实不小,直接暴力是不行的,毕竟是div2,需要预处理。

#include<bits/stdc++.h>
using namespace std;
void solve()
{
    int n, q; scanf("%d %d",&n, &q);
    char str[n];scanf("%s",&str);
    int sum[n]; sum[0] = 0;
    for(ll i=1;i<=n;i++){
        ll j = str[i-1] - 'a' + 1;
        sum[i] = sum[i-1] + j;
    }
    while(q--){
        int l, r; scanf("%d %d", &l, &r);
        printf("%d\n",sum[r]-sum[l-1]);  
    }

}
int main(){
    solve();
    return 0;
}

c

(1)
c题真是交了n遍了
要用c++17,不要用c++14,数据太大的时候,有差别,看了别人提交的代码大都选择c++17,主要是在ceil ()函数的区别吧
(2)
设置vector的时候:
如果是固定长度,则需要设置成:vl arr(n)
否则:vl neg
如同这题的 n e g neg neg向量,一开始设置成长度为n, neg.size() 的值就很离谱。
(3) ceil 如果是c++17,记得设置成ceil((double)x / (double)y)
(4)这道题的思路,在做贪心的时候,需要先排序,不能默认第一个的区间长度是最小

#include<bits/stdc++.h>
using namespace std;

#define ios ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL)
#define pb push_back
#define all(x) (x).begin(), (x).end()

typedef long long ll;
typedef vector<ll> vl;



void solve()
{
    ll n, k, x;

    cin >> n >> k >> x;
    
    vl arr(n),neg;

    for (ll i = 0; i < n; ++i) cin >> arr[i];
    
    sort(all(arr));

    for (ll i = 1; i < n; ++i)
    {
        ll tmp = arr[i] - arr[i-1];
        if(tmp<=x) continue;
        else neg.pb(tmp);
    }
    sort(all(neg));
    for (ll i = 0; i < neg.size(); ++i)
    {
        if(k==0) break;
        // cel((float)x/(floaty)); 有一个float
        ll c = (ceil)((double)neg[i]/(double)x) - 1;
        //cout<<c<<" ";
        if(k-c<=0)
        {
            neg[i] -= k*x; // 默认k是大于等于1的,能到这里,当然不是0,否则前面的条件(k==0)就过不了
            k==0;
            break;
        }
        neg[i] -= c*x;
        k-=c;

    }
    ll ans = 1;
    
    for (ll i = 0; i < neg.size(); ++i)
    {
        if(neg[i]>x) ans++;
    }
    printf("%lld", ans);
}

int main(){
    ios;
    solve();
    return 0;
}

d

这题被vector 绕进去了!

首先要熟悉定义:vector<PII>q(n);
明确你要排序的对象(ff 还是ss):因为sort排序的时候,默认是拿第一个来排序;

题目总的b变成了ss, a变成了ff,开始操作;

排序的基准:容易打折的,换句话就是,买得少也打折,那么这类物品排在前面,否则靠后,再通俗一点就是b小在前, b 大在后。

买对应b大的商品去凑b小的商品,这样容易达到打折的限度。

#include<bits/stdc++.h>
using namespace std;

#define ios ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL)
#define MOD 1000000007
#define MOD1 998244353
#define INF 1e18
#define pb push_back
#define ppb pop_back
#define ff first
#define ss second
#define PI 3.141592653589793238462
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()

typedef long long ll;
typedef unsigned long long ull;
typedef long double lld;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb;
typedef pair<ll,ll> PII;


ll moduloExp(ll x, ll y){
    ll res = 1;
    x%=MOD;
    while(y){ if(y&1) res = (res*x)%MOD;y/=2; x = (x*x)%MOD;}
    return res;
}

void solve()
{
    ll n; cin >> n; 

    std::vector<PII> q(n);

    for (int i = 0; i < n; ++i) cin >> q[i].ss >> q[i].ff;
    
    sort(all(q));
    ll l = 0, r = n-1;
    ll ans = 0, cnt = 0, num = 0;
    while(l <= r)
    {
        if(q[l].ff <= cnt){
            cnt += q[l].ss;
            ans += q[l].ss;
            l++;
        }else{
            num = min(q[r].ss, q[l].ff-cnt); 
            cnt += num; //  商品数
            ans += 2*num; // 价格
            q[r].ss -= num; 排在最后的(难以达到打折的物品数量减少)
            if(!q[r].ss) r--; // 如果减少完了,操作一下
        }
        
    }
    printf("%lld\n", ans);

}

int main(){
    ios;
    solve();
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值