擅长解密的小红同学(多重集排列)

链接

对于这题来说,求期望就是求排列的种类。


简单证明:(0代表失败,1代表成功)

11

201

3001

.

.

.

n次  000 ...0001

当n趋于无穷的时候,所有的方法都被尝试过一遍。

排列种类数:

多重集排列问题:直接排列,然后取消相同元素的顺序:

a n s = ( n 0 + n 1 + n 2 + . . . + n 9 ) ! / n 1 ! ∗ n 2 ! ∗ . . . ∗ n 9 ! ans = (n_0 + n_1 + n_2 +...+n_9)! / n_1! * n_2! * ... * n_9! ans=(n0+n1+n2+...+n9)!/n1!n2!...n9!

坑点: a i a_i ai的数据范围虽然是 0 < = a i < = 1 e 6 0 <= a_i <= 1e6 0<=ai<=1e6

但是 ans 的分母可以达到 1e7,所以数组要开到1e7


9.4补充:这个分布的期望就是1/p, 可以用数学严格证明,概率论课上给过结论,p = 1/所有的排列, 因此期望等于所有的排列。

ac code:

// Problem: 擅长解密的小红同学
// Contest: NowCoder
// URL: https://ac.nowcoder.com/acm/contest/11214/B
// Memory Limit: 524288 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
#include<list>
#include<unordered_map>
using namespace std;
#define ff first
#define ss second
#define lowbit(x) (x&-x)
#define pf(a) printf("%d\n",a)
#define mem(x,y) memset(x,y,sizeof(x))
#define dbg(x) cout << #x << " = " << x << endl
#define rep(i,l,r) for(int i = l; i <= r; i++)
#define fep(i,a,b) for(int i=b; i>=a; --i)
typedef pair<int,int> PII;
typedef long long ll;
typedef unsigned long long ull;

const int mod = 1e9 + 7;
const int N = 1e7 + 7;

ll arr[15], fac[N];

ll qmi(ll a, ll b)
{
	ll res = 1;
	while(b)
	{
		if(b&1) res = res * a % mod;
		b >>= 1;
		a = a * a % mod;
	}
	return res;
}

void init()
{
	fac[0] = 1;
	for(int i = 1; i < N; i++)
	{
		fac[i] = fac[i-1] * i % mod;
	}
}

void solve()
{
	ll sum = 0;
	for(int i = 1; i <= 10; i++) cin >> arr[i], sum += arr[i];
	ll ans = fac[sum];
	rep(i,1,10) 
	{
		ans = ans * qmi(fac[arr[i]], mod-2) % mod;
	}
	cout << ans << endl;
}

int main()
{
	init();
	solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值