对于这题来说,求期望就是求排列的种类。
简单证明:(0代表失败,1代表成功)
1次 1
2次 01
3次 001
.
.
.
n次 000 ...0001
当n趋于无穷的时候,所有的方法都被尝试过一遍。
排列种类数:
多重集排列问题:直接排列,然后取消相同元素的顺序:
a n s = ( n 0 + n 1 + n 2 + . . . + n 9 ) ! / n 1 ! ∗ n 2 ! ∗ . . . ∗ n 9 ! ans = (n_0 + n_1 + n_2 +...+n_9)! / n_1! * n_2! * ... * n_9! ans=(n0+n1+n2+...+n9)!/n1!∗n2!∗...∗n9!
坑点: a i a_i ai的数据范围虽然是 0 < = a i < = 1 e 6 0 <= a_i <= 1e6 0<=ai<=1e6
但是 ans 的分母可以达到 1e7,所以数组要开到1e7
9.4补充:这个分布的期望就是1/p, 可以用数学严格证明,概率论课上给过结论,p = 1/所有的排列, 因此期望等于所有的排列。
ac code:
// Problem: 擅长解密的小红同学
// Contest: NowCoder
// URL: https://ac.nowcoder.com/acm/contest/11214/B
// Memory Limit: 524288 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
#include<list>
#include<unordered_map>
using namespace std;
#define ff first
#define ss second
#define lowbit(x) (x&-x)
#define pf(a) printf("%d\n",a)
#define mem(x,y) memset(x,y,sizeof(x))
#define dbg(x) cout << #x << " = " << x << endl
#define rep(i,l,r) for(int i = l; i <= r; i++)
#define fep(i,a,b) for(int i=b; i>=a; --i)
typedef pair<int,int> PII;
typedef long long ll;
typedef unsigned long long ull;
const int mod = 1e9 + 7;
const int N = 1e7 + 7;
ll arr[15], fac[N];
ll qmi(ll a, ll b)
{
ll res = 1;
while(b)
{
if(b&1) res = res * a % mod;
b >>= 1;
a = a * a % mod;
}
return res;
}
void init()
{
fac[0] = 1;
for(int i = 1; i < N; i++)
{
fac[i] = fac[i-1] * i % mod;
}
}
void solve()
{
ll sum = 0;
for(int i = 1; i <= 10; i++) cin >> arr[i], sum += arr[i];
ll ans = fac[sum];
rep(i,1,10)
{
ans = ans * qmi(fac[arr[i]], mod-2) % mod;
}
cout << ans << endl;
}
int main()
{
init();
solve();
return 0;
}