寒假c++学习第二弹——代码进阶(2021.01.20)
目录
1.a+b问题
2.斐波那契数列
3.矩阵旋转
4.最大子阵
5.随机数
6.交叉排序
7.进制转换
8.回文数
9.机器人
1.a+b问题
题目描述:
输入两个整数a,b,输出两个整数的和。
输入格式:
第一行输入一个整数T,表示需要计算的次数。接下来T行,每行输入两个用空格分隔的整数a,b。
输出格式:
对于每次输入的a,b,输出a+b的值。结果保证在32位整型(int)范围内。
输入样例:
5
1 2
3 4
5 6
7 8
9 10
输出样例:
3
7
11
15
19
代码如下
#include <iostream>
using namespace std;
int main(){
int T, a, b;
cin >> T;
for(int i = 0; i < T; i++){
cin >> a >> b;
cout << a + b << endl;
}
return 0;
}
2.斐波那契数列
题目描述:
斐波那契数列:1,1,2,3,5,8,13,21.......
用fn表示斐波那契数列的第n项,则有:f1=f2=1,fn = fn-1 + fn-2(n > 2)。输入一个n,求出fn对1000000007(10^9 + 7)取模结果。
输入格式:
输入一个整数n(1 <= n <= 100000).
输出格式:
输出fn mod 1000000007 的值。
输入样例:
3
输出样例:
2
代码如下
#include <iostream>
using namespace std;
const int mod = 1e9 + 7;
//每个循环取一次模
int f[100005];
int main(){
int n;
cin >> n;
f[1] = 1;
f[2] = 1;
for(int i = 3; i <= n; i++){
f[i] = (f[i-1] + f[i-2]) % mod;
}
cout << f[n] << endl;
return 0;
}
3.矩阵旋转
题目描述:
给出一个n x m的整数矩阵,请你把这个矩阵顺时针旋转90°以后输出。
输入格式:
第一行输入两个整数n,m(1 <= n, m <= 200),用空格隔开。
接下来n行,每行输入m个整数,表示输入的矩阵。矩阵中的元素都是int范围内的整数。
输出格式:
输出m行,每行n个空格隔开的整数,表示旋转以后的矩阵。注意每行末尾不能输出多余空格。
输入样例:
3 4
-1 3 6 3
7 7 9 1
10 3 4 6
输出样例:
10 7 -1
3 7 3
4 9 6
6 1 3
代码如下
#include <iostream>
using namespace std;
int num[205][205];
int main(){
int n, m;
cin >> n >> m;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
cin >> num[i][j];
}
}
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(j != n-1){
cout << num[n-1-j][i] << " ";
}else{
cout << num[n-1-j][i] << endl;
}
}
}
return 0;
}
4.最大子阵
题目描述:
给定一个n x m的矩阵A,求A中的一个非空子矩阵,使这个子矩阵中的元素和最大。其中,A的子矩阵指在A中行和列均连续的一部分。
输入格式:
输入的第一行包含两个整数n,m(1 <= n, m <= 50),分别表示矩阵A的行数和列数。接下来n行,每行m个整数,表数据帧Ai,j(-1000 <= Ai,j <= 1000)。
输出格式:
输出一行,包含一个整数,表示A中最大子矩阵的元素和。
输入样例:
3 3
2 -4 1
-1 2 1
4 -2 2
输出样例:
6
代码如下
#include <iostream>
using namespace std;
//暴力方法
int A[55][55];
int main(){
int n, m, ans;
cin >> n >> m;
ans = -1005; //选取最小边界
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
cin >> A[i][j];
}
}
for(int i=0; i<n; i++){ //上边界
for(int j=i; j<n; j++){ //下边界
for(int k=0; k<m; k++){ //左边界
for(int l=k; l<m; l++){ //右边界
int temp = 0;
for(int p=i; p<=j; p++){
for(int q=k; q<=l; q++){
temp += A[p][q];
}
}
if(temp > ans){
ans = temp;
}
}
}
}
}
cout << ans << endl;
return 0;
}
5.随机数
题目描述:
用计算机生成了n(1 <= n <= 100)个1到1000之间的随机数。对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号,然后再把这些数从小到大排序,按照排好的顺序去找同学做调查。请你完成“去重”和“排序”工作。
输入格式:
共两行,第一行为一个正整数n,第二行有n个用空格隔开的正整数,为所产生的随机数。
输出格式:
第一行输出一个正整数m,表示不相同的随机数的个数,第二行输出m个用空格隔开的正整数,为从小到大排好序的不相同的随机数。
输入样例:
10
20 40 32 67 40 20 89 300 400 15
输出样例:
8
15 20 32 40 67 89 300 400
代码如下
#include <iostream>
#include <algorithm>
using namespace std;
int num[105], ans[105];
int main(){
int n, m;
cin >> n;
for(int i=0; i<n; i++){
cin >> num[i];
}
sort(num, num+n);
m=0;
for(int i=0; i<n; i++){
if(i != 0 && num[i] != num[i-1]){
ans[m++] = num[i-1];
}
}
ans[m++] = num[n-1];
cout << m << endl;
for(int i=0; i<m; i++){
if(i != m-1){
cout << ans[i] << " ";
}else{
cout << ans[i] << endl;
}
}
return 0;
}
6.交叉排序
题目描述:
现在有N个数,其中第i(1 <= i <= N)个数是Ai。现在先将Al1,Al1+1, ……Ar1从小到大排序。再将Al2, Al2+1……Ar2从大到小排序,请输出A排序后的最终结果。
输入格式:
第一行五个整数N,l1, r1, l2, r2(l1 < r1, l2 < r2),均不超过100000.第二行N个不超过int范围的整数,表示A数组。
输出格式:
一行N个用空格分开的整数,表示A排序以后的结果。
输入样例:
6 1 3 2 4
8 3 1 6 9 2
输出样例:
1 8 6 3 9 2
代码如下
#include <iostream>
#include <algorithm>
using namespace std;
int A[100005];
int main(){
int N, l1, r1, l2, r2;
cin >> N >> l1 >> r1 >> l2 >> r2;
for(int i=1; i<=N; i++){
cin >> A[i];
}
sort(A+l1, A+r1+1);
sort(A+l2, A+r2+1, greater<int>());
for(int i=1; i<=N; i++){
if(i != N){
cout << A[i] << " ";
}else{
cout << A[i] << endl;
}
}
return 0;
}
7.进制转换
题目描述:
输入一个十进制数N,把它转换成R进制数输出。在10 <= R <= 16的情况下,用'A'表示10,用'B'表示11,用'C'表示12,用'D'表示13,用'E'表示14,用'F'表示15。
输入格式:
输入包含两个整数N(N <= 10000)和R(2 <= R <= 16).注意,N有可能是负整数。
输出格式:
输出一行,表示转换后的数
输入样例:
23 12
输出样例:
1B
代码如下
#include <iostream>
using namespace std;
char ans[105];
int main(){
int N, R;
cin >> N >> R;
if(N < 0){
cout << "-";
N = -N;
}
int m=0;
while(N){
int now = N % R;
if(now <= 9){
ans[m++] = '0' + now;
}else{
ans[m++] = 'A' + now - 10;
}
N /= R;
}
if(m == 0){
cout << 0;
}
for(int i=m-1; i>=0; i--){
cout <<ans[i];
}
cout << endl;
return 0;
}
8.回文数
题目描述:
一个正整数,如果交换高低位以后和原数相等,那么称这个数为回文数。比如 121,2332 都是回文数,13,4567不是回文数。任意一个正整数,如果其不是回文数,将该数交换高低位以后和原数相加得到一个新的数,如果新数不是回文数,重复这个变换,直到得到一个回文数为止。例如,57变换后得到132(57+75),132得到363(132+231),363是一个回文数。曾经有数学家猜想:对于任意正整数,经过有限次上述变换以后,一定能得出一个回文数。至今这个猜想还没有被证明是对的。现在请你通过程序来验证。
输入格式:
输入一行一个正整数n。
输出格式:
输出第一行一个正整数,表示得到一个回文数的最少变换次数。接下来一行,输出变换过程,相邻的数之间用“--->”连接。输出格式参见样例。保证最后生成的数在int范围内。
输入样例:
349
输出样例:
3
349--->1292--->4213--->7337
代码如下
#include <iostream>
using namespace std;
int num[1005]; //存每次变换后的数
//判断回文数
int digit[1005];
bool judge(int x){
int cnt=0;
while(x){
digit[cnt++] = x % 10;
x /= 10;
}
for(int i=0; i<cnt/2; i++){
if(digit[i] != digit[cnt-1-i]){
return false;
}
}
return true;
}
//翻转
int rev(int x){
int ret=0;
while(x){
ret = ret * 10 + x % 10;
x /= 10;
}
return ret;
}
int main(){
int n, m;
cin >> n;
m = 0;
num[m++] = n;
while(!judge(n)){
n += rev(n);
num[m++] = n;
}
cout << m-1 << endl;
for(int i=0; i<m; i++){
if(i != m-1){
cout << num[i] << "--->";
}else{
cout << num[i] << endl;
}
}
return 0;
}
9.机器人
题目描述:
有一个新版机器人,这个机器人有4种指令:1.forward x,前进x米。2.back x,先向后转,然后前进x米。3.left x,先向左转,然后前进x米。4.right x,先向右转,然后前进x米。
现在把机器人放在坐标轴原点,起始朝向为x轴正方向。经过一系列指令以后,输出机器人的坐标位置,坐标轴上一个单位为1米。
输入格式:
第一行输入一个整数n(1 <= n <= 100)表示指令的个数。接下来n行,每行输入形如上面的指令,其中-1000 <= x <= 1000.
输出格式:
输出两个整数x, y表示机器人最后坐标。用空格隔开。
输入样例:
10
back -9
left 3
left 8
back 15
right 10
right -7
right -3
left 11
right 17
left 3
输出样例:
9 -7
代码如下
#include <iostream>
using namespace std;
//left, back, right, forward
int dx[4]={0, -1, 0, 1};
int dy[4]={1, 0, -1, 0};
char op[15]; //指令
int main(){
int n, d, nowx, nowy;
cin >> n;
//原方向
d=3;
nowx=0;
nowy=0;
for(int i=0; i<n; i++){
cin >> op >> x;
if(op[0] == 'b'){
d = (d+2) % 4;
}else if(op[0] == 'l'){
d = (d+1) % 4;
}else if(op[0] == 'r'){
d = (d+3) % 4;
}
nowx += dx[d] * x;
nowy += dy[d] * x;
}
cout << nowx << " " << nowy << endl;
return 0;
}
如有错误欢迎指正