常用数据结构和算法 (算法篇)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lulalei/article/details/79712579

查找和排序是最基础也是最重要的两类算法,熟练地掌握这两类算法,并能对这些算法的性能进行分析很重要,这两类算法中主要包括二分查找、快速排序、归并排序等等。我们先来了解查找算法!
顺序查找:
顺序查找又称线性查找。它的过程为:从查找表的最后一个元素开始逐个与给定关键字比较,若某个记录的关键字和给定值比较相等,则查找成功,否则,若直至第一个记录,其关键字和给定值比较都不等,则表明表中没有所查记录查找不成功,它的缺点是效率低下。
二分查找:
二分查找又称折半查找,对于有序表来说,它的优点是比较次数少,查找速度快,平均性能好。
二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与目标值x做比较,如果x=a[n/2],则找到x,算法中止,如果x小于a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.代码实现如下:

public int funBinSearch(int[] array,int data){

    int low=0;
    int high=array.length-1;

    while(low<=high){
        int mid=(low+high)/2;
        if(data==array[mid]){
            return mid;
        }else if(data<array[mid]){
            high=mid-1;
        }else{
            low=mid+1;
        }
    }
    return -1;
}

排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个按关键字有序的序列。下面主要对一些常见的排序算法做介绍.先来了解冒泡排序!
冒泡排序:
冒泡排序的基本思想是:设排序序列的记录个数为n,进行n-1次遍历,每次遍历从开始位置依次往后比较前后相邻元素,这样较大的元素往后移,n-1次遍历结束后,序列有序。
需要注意的是,如果在某次遍历中没有发生交换,那么就不必进行下次遍历,因为序列已经有序。代码实现如下:

    public void bubbleSort(int[] array){
        boolean flag=true;
        for(int i=0;i<array.length-1&&flag;i++){
            //如果在某次遍历中没有发生交换,那么就不必再进行下次遍历,因为序列已经有序
            flag=false;
            for(int j=0;j<array.length-1-i;j++){
                if(array[j]>array[j+1]){
                    int temp=array[i];
                    array[j]=array[j+1];
                    array[j+1]=temp;
                    flag=true;
                }
            }
        }
    }

简单选择排序:
简单选择排序的思想是:设排序序列的记录个数为n,每一轮进行n-2-i次选择,每次在n-i-1(i = 1,2,…,n-1)个记录中选择关键字最小的记录作为有效序列中的第i个记录。代码实现如下:

    public void selectionSort(int[] array){
        for(int i=0;i<array.length-1;i++){
            int mink=i;
            //每次从未排序数组中找到最小值的坐标
            for(int j=i+1;j<array.length;j++){
                if(array[j]<array[mink]){
                    mink=j;
                }
            }

            //将最小值放在最前面
            if(mink!=i){
                int temp=array[mink];
                array[mink]=array[i];
                array[i]=temp;
            }
        }
    }

直接插入排序:
直接插入的思想是:是将一个记录插入到已排好序的有序表中,从而得到一个新的、记录数增1的有序表。

    public void insertSort(int[] array){
        int j;
        for(int i=1;i<array.length;i++){
            int temp=array[i];
            j=i-1;
            while(j>-1&&temp<array[j]){
                array[j+1]=array[j];
                j--;
            }
            array[j+1]=temp;
        }
    }

希尔排序:

希尔排序又称“缩小增量排序”,它是基于直接插入排序的以下两点性质而提出的一种改进:(1) 直接插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。(2) 直接插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。快速简单理解——希尔排序.

public void xier(int[] arrays,int n){
        int gap=n/2;
        for(;gap>0;gap=gap/2){
            for(int i=0;i<n;i++){
                int temp=a[i];
                int j=i-gap;
                while(j>=0&&temp<a[j]){
                    a[j+gap]=a[j];
                    j=j-gap;
                }
                a[j+gap]=temp;
            }
        }
    }

快速排序:
快速排序的主要思想是:在待排序的序列中选择一个称为主元的元素,将数组分为两部分,使得第一部分中的所有元素都小于或等于主元,而第二部分中的所有元素都大于主元,然后对两部分递归地应用快速排序算法。简单理解 快速排序算法.

public void quickSort(int[] s,int left,int right){
        if(1<right){
            int i=left,j=right,temp=s[left];
            while(i<j){
                while(i<j&&s[j]>=temp){//从右向左找第一个小于temp的数
                    j--;
                }
                if(i<j){
                    s[i++]=s[j];
                }
                while(i<j&&s[i]<temp){//从左向右找第一个大于等于temp的数
                    i++;
                }
                if(i<j){
                    s[j--]=s[i];
                }
            }
            s[i]=temp;
            quickSort(s,left,i-1);//递归调用(分治法)
            quickSort(s,i+1,right);
        }
    }

堆排序:
在介绍堆排序之前首先需要了解堆的定义,n个关键字序列K1,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):(1) ki <= k(2i)且 ki <= k(2i+1) (1 ≤ i≤ n/2),当然,这是小根堆,大根堆则换成>=号。
如果将上面满足堆性质的序列看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有的非终端节点的值均不大于(或不小于)其左右孩子节点的值。
堆排序的主要思想是:给定一个待排序序列,首先经过一次调整,将序列构建成一个大顶堆,此时第一个元素是最大的元素,将其和序列的最后一个元素交换,然后对前n-1个元素调整为大顶堆,再将其第一个元素和末尾元素交换,这样最后即可得到有序序列。堆排序就这么简单.

//建堆
    //参数:看作是完全二叉树,当前父节点位置,节点总数
    public void heapify(int[] arrays,int currentRootNode,int size){

        if(currentRootNode<size){
            //左节点和右节点的位置
            int left=2*currentRootNode+1;
            int right=2*currentRootNode+2;

            //把当前父节点看成是最大的
            int max=currentRootNode;
            if(left<size){
                //如果比当前根元素要大,记录它的位置
                if(arrays[max]<arrays[left]){
                    max=left;
                }
            }
            if(right<size){
                //如果比当前根元素要大,记录它的位置
                if(arrays[max]<arrays[right]){
                    max=right;
                }
            }
            //如果最大的不是根元素位置,那么就交换
            if(max!=currentRootNode){
                int temp=arrays[max];
                arrays[max]=arrays[currentRootNode];
                arrays[currentRootNode]=temp;

                //继续比较,知道完成一次堆建
                heapify(arrays,max,arrays.length);
            }
        }
    }

    //完成一次建堆,最大值在堆的顶部(根节点)
    public void maxHeapify(int[] arrays,int size){

        //从数组的尾部开始,直到第一个元素(角标为0)
        for(int i=size-1;i>=0;i--){
            heapify(arrays,i,size);
        }
    }

    for(int i=0;i<arrays.length;i++){

        //每次建堆就可以排除一个元素
        maxHeapify(arrays,arrays.length-i);

        //交换
        int temp=arrays[0];
        arrays[0]=arrays[arrays.length-1-i];
        arrays[length-1-i]=temp;
    }

归并排序:
归并排序 (merge sort) 是一类与插入排序、交换排序、选择排序不同的另一种排序方法。归并的含义是将两个或两个以上的有序表合并成一个新的有序表。它是一种稳定的排序,java.util.Arrays类中的sort方法就是使用归并排序的变体来实现的。“深入理解”—归并排序算法.

public void mergeSort(int[] arrays){
        if(arrays.length>1){
            sort(arrays,0,arrays.length);
        }
    }

    //归并排序
    //将两个(或两个以上)有序表合并成一个新的有序表 即把待排序
    //序列分为若干子序列,每个子序列是有序的.然后把有序子序列合并为
    //整体有序序列
    //传入待排序数组,输出有序数组
    public int[] sort(int[] nums,int low,int high){
        int mid=(low+high)/2;
        if(low<high){
            //处理左边
            sort(nums,low,mid);
            //处理右边
            sort(nums,mid+1,high);
            //左右归并
            merge(nums,low,mid,high);
        }
        return nums;
    }

    public void merge(int[] nums,int low,int mid,int high){
        //定义一个辅助数组
        int[] temp=new int[high-low+1];
        int i=low;
        int j=mid+1;
        int k=0;
        //找出较小值元素放入temp数组中
        while(i<=mid&&j<=high){
            if(nums[i]<nums[j]){
                temp[k++]=nums[i++];
            }else{
                temp[k++]=nums[j++];
            }
        }
        //处理较长部分
        while(i<=mid){
            temp[k++]=nums[i++];
        }
        while(j<=high){
            temp[k++]=nums[j++];
        }
        //使用temp中的元素覆盖nums中的元素
        for(int k2=0;k2<temp.length;K2++){
            nums[k2+low]=temp[k2];
        }
    }

更多算法内容可以浏览常见数据结构与算法整理总结(下).

没有更多推荐了,返回首页