用线性回归模型预测标准体重
已知部分身高(特征)和对应的标准体重(标签)的数据
身高 | 标准体重 |
---|---|
152 | 51 |
156 | 53 |
160 | 54 |
164 | 55 |
168 | 57 |
172 | 60 |
176 | 62 |
180 | 65 |
184 | 69 |
188 | 72 |
在建模之前,我们应该先理解一下手中的数据,否则在未来预测中,若出现问题则难以找出问题的根源。理解数据就是通过数据可视化的方式观察其是否有数据异常或有离群值,若数据没有问题,则观察数据的规律,然后再选择合适的模型。
因为上面的数据已经可以很直观的看出数据是没有异常的,所以这里省略了数据预处理步骤,直接通过数据可视化的方式观察其中的规律。
import numpy as np
from matplotlib import pyplot as plt
# 将数据放在numpy的数组中,创建数组对象
data= np.array([[152,51],[156,53],[160,54],[164,55],
[168,57],[172