我的第一个AI程序

博客介绍了如何利用线性回归模型预测标准体重。作者首先分析数据,发现身高与体重呈线性关系,因此直接使用线性回归进行建模,并展示了建模过程,完成首个AI程序。
摘要由CSDN通过智能技术生成

用线性回归模型预测标准体重

已知部分身高(特征)和对应的标准体重(标签)的数据

身高 标准体重
152 51
156 53
160 54
164 55
168 57
172 60
176 62
180 65
184 69
188 72

在建模之前,我们应该先理解一下手中的数据,否则在未来预测中,若出现问题则难以找出问题的根源。理解数据就是通过数据可视化的方式观察其是否有数据异常或有离群值,若数据没有问题,则观察数据的规律,然后再选择合适的模型。

因为上面的数据已经可以很直观的看出数据是没有异常的,所以这里省略了数据预处理步骤,直接通过数据可视化的方式观察其中的规律。

import numpy as np
from matplotlib import pyplot as plt

# 将数据放在numpy的数组中,创建数组对象
data= np.array([[152,51],[156,53],[160,54],[164,55],
                [168,57],[172
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值