CF1343C题解

题目传送门

DP算法

1.题目大意

就是 T T T 组数据,每个数据一个 n n n 和一个数组找出相邻两项异号并且长度最大、各项之和最大的子序列。

2.思路

看到这个题,首先可以想到 B 3637 B3637 B3637 最长上升子序列这个题,只需要改一下中间 d p [ ] dp[] dp[] 的转移方程,并把取最大改为求和,当然 d p [ i ] dp[i] dp[i] 的意义也有改变。

d p [ i ] dp[i] dp[i] 表示第 i i i 个数应取的数。

转移方程:

( p o s pos pos 表示 d p dp dp 取到第几个数了)

如果 d p [ p o s ] dp[pos] dp[pos] a [ i ] a[i] a[i] 是同号,则比较 d p [ p o s ] dp[pos] dp[pos] a [ i ] a[i] a[i] 的大小,取大的值。

如果 d p [ p o s ] dp[pos] dp[pos] a [ i ] a[i] a[i] 是异号,则 p o s + 1 pos+1 pos+1, d p [ p o s ] dp[pos] dp[pos] 等于 a [ i ] a[i] a[i]

代码

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
int a[N],n,dp[N],maxi=-1e9,T;
int main()
{
	cin>>T;
	while(T--)//T组数据
	{
		cin>>n;
		for(int i=1;i<=n;i++)
		{
			cin>>a[i];
			dp[i]=a[i];
		}
		dp[1]=a[1];
		int pos=1;//dp[]去到第几个数了
		for(int i=2;i<=n;i++)
		{
			if((a[i-1]<0&&a[i]<0)||(a[i-1]>0&&a[i]>0))//转移
				dp[pos]=max(dp[pos],a[i]);
			else
				dp[++pos]=a[i];
		}
		long long sum=0;//切记开long long
		for(int i=1;i<=pos;i++)
			sum+=dp[i];//求和
		cout<<sum<<"\n";
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值