以下是人工智能学习路径的详细规划,分5个阶段循序渐进,建议学习周期1.5-2年:
一、筑基阶段(3-6个月)
- 数学基础
- 线性代数:矩阵运算(推荐《Linear Algebra Done Right》)
- 微积分:偏导数/梯度(MIT 18.01课程)
- 概率统计:贝叶斯定理(可汗学院概率课)
- 编程基础
- Python语法(《Python Crash Course》)
- 数据处理库:NumPy/Pandas(官方文档+Kaggle练习)
- 可视化工具:Matplotlib/Seaborn
二、机器学习基础(4-8个月)
- 核心算法
- 监督学习: y = θ T x + b y = \theta^T x + b y=θTx+b 线性回归
- 无监督学习:K-means聚类(sklearn实现)
- 决策树与集成学习(《Hands-On ML》第6章)
- 工程实践
- 特征工程技巧(Kaggle特征工程课程)
- 模型评估:ROC/AUC(Python代码实现)
- 部署基础(Flask+Docker)
三、深度学习进阶(6-12个月)
- 神经网络架构
- CNN:LeNet到ResNet演变(PyTorch实现)
- RNN:LSTM结构 f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf⋅[ht−1,xt]+bf)
- Transformer:自注意力机制图解
- 框架实战
- TensorFlow:Eager Execution模式
- PyTorch:动态计算图(官方60分钟入门)
- Hugging Face:BERT微调实战
四、专业领域深化(持续)
- 计算机视觉
- OpenCV图像处理
- YOLO目标检测(官方论文精读)
- GAN生成对抗网络(PyTorch实现DCGAN)
- 自然语言处理
- Word2Vec与GloVe对比
- BERT预训练(Google Colab实践)
- GPT模型原理分析
五、持续成长体系
- 实践平台
- Kaggle竞赛(从Titanic开始)
- Papers With Code复现
- GitHub优质项目:如Detectron2
- 学术前沿
- arXiv每日精选论文
- NeurIPS/IJCAI最新进展
- 开源社区贡献(如PyTorch贡献指南)
关键学习法:
- 费曼技巧:每周向非技术人员解释一个算法
- 项目驱动:每个阶段完成3个完整项目
- 错题笔记:建立AI知识错题本
- 思维导图:构建知识图谱(推荐XMind)
避坑指南:
- 不要过早接触复杂论文(先掌握经典材料)
- 避免"调参侠"陷阱(重视理论基础)
- 警惕过时教程(以2020年后资料为主)
- 保持代码规范(严格遵循PEP8)
资源获取途径:
- 电子书:Libgen/Z-Library
- 课程:Stanford CS229(吴恩达新版)
- 工具链:Google Colab Pro+GitHub Copilot
- 社区:Reddit的MachineLearning版块
进阶路线图:
基础工程师 → 领域专家 → 全栈AI工程师 → 研究科学家(平均需要3-5年持续投入)