- 博客(23)
- 收藏
- 关注
原创 YOLOv8-DGCST_飞机应急着陆点识别与分类实战
本文提出了一种基于改进YOLOv8-DGCST模型的飞机应急着陆点智能识别方法。通过引入动态分组特征融合机制(DGCST),优化了复杂场景下不同尺度目标的检测能力,显著提升了小目标识别精度。研究构建了包含5000张图像的专业数据集,涵盖多种着陆表面类型和天气条件。实验结果表明,该方法在准确率和召回率上较传统模型提升显著,实际部署中达到95.3%的识别准确率,平均响应时间小于1.2秒。系统已在多个机场稳定运行6个月,验证了其可靠性和实用性。未来将探索多模态信息融合和轻量化部署,进一步提升全天候检测能力。
2025-12-18 15:38:54
493
原创 【深度学习】Mask R-CNN在温室番茄成熟度检测中的应用——基于ResNet18与FPN的多级特征融合分类系统
本文提出了一种基于改进Mask R-CNN的温室番茄成熟度检测系统,通过结合ResNet18骨干网络和FPN多级特征融合技术,实现了对不同成熟度番茄的高精度识别。系统采用5000张标注图像进行训练,通过数据增强提高模型鲁棒性,最终在测试集上达到92.3%的准确率和89.7%的mAP。实际部署采用边缘计算设备,处理速度达20FPS,显著提升了番茄采摘效率。实验表明,该系统在复杂光照条件下表现稳定,为智能农业提供了有效的技术解决方案。
2025-12-18 14:55:28
363
原创 铁路轨道表面缺陷检测与识别_YOLO12-BiFPN模型应用详解
本文详细介绍了基于YOLO12-BiFPN模型的铁路轨道表面缺陷检测方法。首先阐述了数据集构建与预处理过程,包括图像采集、标注和数据增强技术。随后分析了YOLO12-BiFPN模型的架构特点,重点介绍了其高效特征提取网络和BiFPN特征融合机制。文章还探讨了模型训练优化策略、性能评估指标以及实际部署应用中的关键问题。实验结果表明该方法能有效检测轨道裂纹、磨损等缺陷,但也指出在模型泛化能力、计算复杂度和微小缺陷检测等方面仍存在改进空间。未来研究可结合5G、边缘计算等技术,开发更智能化的轨道健康监测系统。
2025-12-16 09:20:12
934
原创 大型铸件表面缺陷检测与分类_YOLO11-C2BRA应用实践
本文探讨了YOLO11-C2BRA模型在大型铸件表面缺陷检测中的应用。传统检测方法效率低、主观性强且成本高,而基于深度学习的YOLO11-C2BRA模型通过改进特征提取网络和引入轻量级注意力机制,显著提升了检测精度和效率。研究构建了包含5类常见缺陷的专用数据集,采用数据增强和混合精度训练等优化策略,使模型mAP@0.5达到89.2%。实际应用表明,该系统检测效率提升至每小时150件,准确率达95.3%,大幅降低了人工成本和质量风险,为智能制造提供了可靠的技术支持。
2025-12-16 08:27:24
907
原创 【深度学习】【目标检测】改进YOLOv11香烟包装识别与分类_CSP-PTB优化
本文提出了一种改进的YOLOv11模型,通过CSP-PTB优化策略提升香烟包装识别与分类性能。研究构建了包含10种品牌、2000张图像的数据集,并设计了针对性的数据增强策略。改进的CSP结构引入残差连接和优化分支,PTB模块则通过部分特征图过渡减少信息丢失。实验表明,优化后的模型在测试集上mAP达到86.2%,相比基线提升7.7%,特别在小目标检测方面表现突出。该方法为零售商品自动识别提供了有效解决方案。
2025-12-15 19:38:34
561
原创 篮球场景目标检测与定位_YOLO11-RFPN实现详解
本研究采用篮球投篮数据集进行实验,该数据集包含7486张篮球相关图像,采用YOLOv8格式标注,包含篮球、篮筐和人员三类目标。数据集按7:2:1的比例划分为训练集、验证集和测试集,分别为5240张、1497张和749张图像。数据清洗与筛选:首先对原始数据集进行质量检查,剔除模糊、重复或标注不准确的图像。经过筛选,最终保留7123张高质量图像用于实验。数据增强:由于篮球检测场景复杂多变,单一数据难以覆盖所有情况,因此采用多种数据增强技术扩充训练集。
2025-12-15 18:55:26
875
原创 【目标检测】基于Cascade-RCNN的龙舌兰植物检测模型训练与优化实战
本文提出了一种基于改进Cascade-RCNN的龙舌兰植物检测模型。该模型通过多阶段训练策略和特征金字塔网络优化,显著提升了检测精度和鲁棒性。实验结果表明,在复杂背景下,模型的检测准确率达到92.7%,比传统方法提高约15个百分点。文章详细介绍了技术原理、实现步骤和核心代码,并展示了模型在农业自动化、病虫害监测等实际场景中的应用效果。该系统已成功部署于墨西哥龙舌兰种植基地,为农业生产提供了有效的数据支持。
2025-12-12 20:20:24
684
原创 【航空图像检测】基于YOLOv8-seg-RCSOSA算法的牛目标检测研究与应用
本文提出改进的YOLOv8-seg-RCSOSA算法用于航空图像牛目标检测,通过引入自注意力机制和优化采样策略,显著提升了复杂场景下的检测精度。实验表明,该算法在mAP@0.5和IoU等指标上优于主流模型,特别是对小目标检测效果突出。消融实验验证了各改进组件的有效性,虽然推理速度略有下降(25FPS),但仍满足实时需求。该研究为智慧农业中的牛群监测提供了高效解决方案,具有重要应用价值。
2025-12-12 19:53:47
639
原创 基于YOLOv3-MobileNetV2的车辆与车牌检测
本文提出了一种基于YOLOv3-MobileNetV2的轻量级车辆与车牌检测方法。通过将YOLOv3的多尺度检测能力与MobileNetV2的高效特征提取相结合,在保持较高检测精度的同时显著降低了模型复杂度。实验结果表明,该方法在公开数据集上达到76.8%的mAP,推理速度达42FPS,模型大小仅45MB。经过量化优化后,模型可进一步压缩至12MB,速度提升至65FPS,适合部署在边缘设备上实现实时检测。该系统在智能交通管理、违章监控等领域具有广泛应用前景。
2025-12-10 11:12:38
925
原创 双目视觉_基于双目视觉的车辆与交通设施检测及测距_VFNet_R101_FPN实现
本文探讨了基于双目视觉的车辆与交通设施检测及测距系统实现。系统采用双目视觉技术,通过视差计算深度信息,结合VFNet_R101_FPN模型实现高精度目标检测。详细介绍了双目视觉原理、数据集选择、模型训练优化策略,以及SGM视差计算和深度转换方法。系统采用模块化设计,在多种场景下保持良好性能(晴天检测准确率94.2%,测距误差<5%)。实际应用案例显示,该系统在智能交通监控和自动驾驶辅助中成效显著,能有效提升交通管理效率和行车安全性。
2025-12-10 10:39:52
805
原创 冲浪场景中的冲浪板、冲浪者和海浪检测识别——使用YOLO11-GDFPN模型实现
本文提出了一种基于YOLO11-GDFPN模型的冲浪场景目标检测方法,用于识别冲浪板、冲浪者和海浪。通过构建包含不同环境条件的冲浪数据集,并采用数据增强技术提升模型泛化能力。模型融合了YOLOv11的检测能力和GDFPN特征融合网络的优势,针对小目标检测进行了优化。实验结果表明,该方法在测试集上取得了平均0.90的mAP@0.5值,其中海浪检测效果最佳。消融实验验证了GDFPN模块的有效性,能显著提升检测性能。该技术可应用于体育分析、安全监控和内容创作等领域,如运动员表现评估、溺水预警和自动视频剪辑等。
2025-12-08 10:58:35
657
原创 【深度学习】太阳黑子与孔隙检测 yolov10n-BIMAFPN模型原理与应用
本文提出了一种基于改进YOLOv10n的太阳黑子检测模型YOLOv10n-BIMAFPN,通过引入双向多尺度注意力特征金字塔网络(BIMAFPN)有效提升了小目标检测性能。该模型采用双向特征融合和多尺度注意力机制,结合针对性的数据增强和损失函数优化策略,在公开数据集上取得了92.4%的mAP@0.5和73.5%的mAP@0.5:0.95,优于主流轻量级检测模型。经量化优化后,模型可在边缘设备实现实时检测,已成功应用于多个太阳观测站点的自动化监测系统。
2025-12-08 10:16:20
549
原创 基于yolo13-seg-OREPA改进的犀牛目标检测模型实战与性能分析
本文提出了一种基于改进yolo13-seg-OREPA模型的犀牛目标检测方法。通过构建包含5000张图像的犀牛数据集,采用数据增强策略提升模型鲁棒性。在模型改进方面,引入注意力机制增强特征提取能力,优化特征金字塔网络提升小目标检测性能,并设计新的损失函数解决类别不平衡问题。实验结果表明,改进后的模型在测试集上达到86.2%的mAP@0.5,优于原始模型。同时通过模型量化与剪枝技术,实现了在边缘设备上的高效部署,为野生动物保护提供了有效的技术方案。
2025-12-04 15:49:45
852
原创 基于RetinaNet的遥感图像车辆类型检测识别系统
我们的系统基于改进的RetinaNet架构,主要由特征提取网络、特征融合模块和多尺度检测头三部分组成。与传统RetinaNet相比,我们在多个环节进行了创新性改进,使其更适合遥感图像中的车辆检测任务。🎯# 2. 系统核心架构代码示例self.backbone = backbone # 特征提取网络self.fpn = FeaturePyramidNetwork(backbone.out_channels) # 特征金字塔网络。
2025-12-04 15:04:06
584
原创 YOLOv8-EfficientHead:工业传送带上煤炭、脉石和高岭石矿石的实时检测与分类研究
本文提出了一种基于YOLOv8-EfficientHead的工业传送带矿石实时检测与分类方法,针对煤炭、脉石和高岭石三种矿石进行高效识别。通过改进网络结构设计轻量化分类头、动态特征融合等技术,在保持92%检测精度的同时,将推理速度提升至30FPS。实验表明,该系统相比传统方法显著提高了分类效率和准确性,已在实际矿山应用中验证了其稳定性和可靠性。未来研究将进一步优化模型在复杂工业环境中的鲁棒性,并扩展更多矿石类别的识别能力。
2025-12-02 13:05:15
832
原创 基于yolo11-C3k2-PFDConv的危险驾驶行为识别与疲劳状态监测系统
通过本次实战,我们成功训练了一个能识别4类危险驾驶行为的YOLOv8模型。虽然当前mAP只有0.014,但通过持续优化数据集和模型架构,完全可以达到工业级应用标准。🌟关键成功要素高质量标注数据(占成功因素的60%)合理的超参数调优(占30%)充分的训练时长(占10%)想要获取完整的项目源码和训练脚本?点击这里查看: 包含详细的配置文件和推理代码!记住,AI模型的训练就像学开车,需要耐心积累和不断试错。🚀 现在就开始你的危险驾驶行为识别项目吧,用技术守护道路交通安全!
2025-12-02 12:32:07
665
原创 【深度学习】血液细胞检测:基于YOLOv8-RGCSPELAN的白细胞、红细胞与血小板识别与定位指南
本文提出了一种基于改进YOLOv8模型的血液细胞自动检测方法,通过引入RGCSPELAN模块增强多尺度特征提取能力,优化检测头设计以适应不同大小细胞的识别需求。实验结果表明,该方法在血液细胞数据集上达到96.8%的mAP,较原始YOLOv8提升3.2%,同时保持45 FPS的实时检测速度。改进模型特别提升了血小板等小目标的检测精度,有效解决了传统人工检测效率低、主观性强的问题。消融实验验证了各模块的有效性,为临床血液细胞自动化检测提供了高效可靠的解决方案。
2025-11-28 18:33:50
863
原创 甜瓜花朵识别与分类_基于YOLO13和C3k2模块的快速花朵检测_FasterFD详解
本文提出基于YOLO13和C3k2模块的甜瓜花朵快速检测算法FasterFD,通过构建5677张图像的数据集,实现花朵精准识别与分类。创新性采用C3k2模块增强特征提取能力,结合FasterFD多尺度特征融合策略,显著提升小目标检测精度。实验表明,该算法mAP@0.5达0.892,推理速度11.8ms,优于主流检测模型。集成至农业系统后,授粉效率提升35%,人工成本降低40%。研究为甜瓜自动化授粉提供了高效解决方案,展现了深度学习在农业智能化中的广阔前景。
2025-11-28 17:41:56
718
原创 YOLO11-C3k2-FMB改进_稻种识别与分类任务中的创新应用_Python
本文提出了一种基于改进YOLO11模型的稻种识别与分类方法,通过融合C3k2和FMB模块的创新架构,显著提升了小目标检测性能。研究首先对2270张稻种图像进行预处理和数据增强,包括几何变换、颜色调整和噪声添加。模型改进方面,在YOLO11基础架构中引入C3k2-FMB融合策略,结合跨阶段连接和多尺度特征挖掘机制,同时采用深度可分离卷积等轻量化设计。实验结果表明,改进模型在稻种检测任务上的mAP提升3.2%,推理速度仅下降5.3%,实现了精度与效率的良好平衡。该模型已成功部署于边缘设备,为农业智能化提供了有效
2025-11-24 12:23:14
12
原创 水稻叶片病害分割识别_基于改进YOLOv8-seg与RCSOSA算法的精准检测系统_3
本文提出了一种基于改进YOLOv8-seg与RCSOSA算法的水稻叶片病害精准检测系统。系统通过引入混合注意力机制、优化多尺度特征融合和改进损失函数,显著提升了YOLOv8-seg模型的分割精度。同时,针对病害分类任务,对RCSO算法进行离散化处理、自适应参数调整和多策略融合优化,形成了RCSOSA算法。实验结果表明,改进后的系统在mIoU指标上提升4.2%,分类准确率提高6.8%,处理单张图像仅需0.15秒,实现了高精度与高效率的平衡。该系统为水稻病害的智能诊断提供了有效解决方案。
2025-11-24 11:56:02
35
原创 【月相识别与分类】基于计算机视觉技术识别五种月相状态(满月、新月、上弦月、下弦月、亏月)【含改进模型gfl_r50_fpn_1x_coco源码】
本文提出了一种基于计算机视觉的月相识别方法,采用改进的GFL模型结合ResNet50和FPN网络,实现对五种月相状态(满月、新月、上弦月、下弦月和亏月)的自动分类。实验结果表明,该方法在测试集上平均准确率达到91.4%,其中满月识别准确率最高(95%),新月相对较低(88%)。研究详细介绍了模型训练策略(数据增强、学习率调度等)、评估指标(准确率、精确率、召回率)以及实际应用场景(天文教育、农业指导等)。文章还探讨了模型优化方法(量化、剪枝)和未来改进方向(多模态融合、实时跟踪),为月相识别技术的研究和应用
2025-11-19 09:34:36
506
原创 雾天道路多类别车辆与行人检测——基于YOLOv10n与GFPN的改进实现
本文提出了一种改进的YOLOv10n与GFPN结合的雾天道路多目标检测方法。针对雾天图像特征退化问题,设计了包含CSPStage模块和通道注意力的改进GFPN结构,增强多尺度特征融合能力。在YOLOv10基础上引入雾天增强模块和自适应损失函数优化。基于278张雾天道路图像(含6类目标)构建数据集,实验显示改进模型达到89.7% mAP,较基线提升4.2%,同时保持45.2FPS实时性能。该方法有效解决了雾天环境下的目标检测难题,适用于智能交通和自动驾驶系统。未来将优化网络轻量化并扩展数据集规模。
2025-11-19 08:51:46
375
原创 什么是语义分割?原理+手写代码实现
本文介绍了Unet语义分割的核心概念与应用。首先解释了语义分割的定义,即对图像每个像素进行分类并赋予语义标签,强调其与目标检测的区别在于实现像素级精确分割。重点阐述了语义分割原理:通过三维输出特征图表示不同类别位置,最后合成彩色分割图。文章还分析了语义分割的意义在于弥补CNN在位置敏感性上的不足,并列举了自动驾驶、医疗影像等典型应用场景,特别指出Unet在医学图像处理中的优势。最后提供了项目实现的关键要素,包括环境配置、损失函数、评估指标及源码获取方式。
2025-10-03 14:18:51
1051
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅