c++题目魔术数

【题目描述】

X是一个正整数,它的第i个数字是d[i],则 序列(d [1],d[2],d[3],...,d[t])是X 的数字表示(没有前导零)。特别地,d[1]是最高位数字并且d[t]是X的最低位数字。例如,X = 576的数字表示是(5,7,6)。我们说整数X是魔术数,当且仅当:

1、X是某个整数的平方,即对于某个整数Y ,X = Y * Y。

2、对于X 的数字表示(d[1],d[2],d[3],...,d[t]),它满足d[1] < d[2] > d[3] < d[4]......,依此类推。也就是说,对于每个奇数下标i < t,满足d[i] < d[i+1],并且对于每个偶数下标i < t,它满足d[i] > d[i+1]。

给定A和B,输出A和B之间有多少魔术数。

【输入格式】

多组测试数据。

第一行,一个整数G,表示有G组测试数据。1 <= G <= 10。

每组测试数据格式:

一行,两个整数A和B。 1 <= B <= 10^10。 1 <= A <= B 。

【输出格式】

共G行,每行一个整数。

输入样例

输出样例

3

1 64

50 60

121 121

7

0

1

时限:1s(1秒)。

我的代码:

#include<bits/stdc++.h>
using namespace std;
long long n,a,b;
int main(){
	cin>>n;
	for(long long g=1;g<=n;g++)
	{
		cin>>a>>b;
		long long ans=0;
		for(long long i=ceil(sqrt(a));i<=floor(sqrt(b));i++)
		{
			if(i*i>b)break;
			long long s=i*i,l=0,c1[12],c[12];
			for(;s!=0;)
			{
				l++,c1[l]=s%10;
				s=s/10;
			}
			for(long long j=1,k=l;j<=l;j++,k--)c[j]=c1[k];
			
			int p=0;
			for(long long j=1;j<l;j++)
			{
				if(j%2==1){if(c[j]>=c[j+1])p=1;}
				if(j%2==0){if(c[j]<=c[j+1])p=1;}
			}
			if(p==0)ans++;
		}
		cout<<ans<<endl;
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值