一、归并排序
如题:
给定你一个长度为 n 的整数数列。
请你使用归并排序对这个数列按照从小到大进行排序。
并将排好序的数列按顺序输出。
输入格式
输入共两行,第一行包含整数 n。
第二行包含 n 个整数(所有整数均在 1∼109 范围内),表示整个数列。
输出格式
输出共一行,包含 n 个整数,表示排好序的数列。
数据范围
1≤n≤100000
代码如下:
#include<iostream>
using namespace std;
const int N=1e5+5;
int a[N],b[N];
void gb_sort(int a[],int b[],int l,int r)
{
if(r-l<2)
{
if(r-l==1&&a[l]>a[r])swap(a[l],a[r]);
return;
}
int mid=(l+r)>>1,i=l,j=mid+1,k=l;
gb_sort(a,b,l,mid),gb_sort(a,b,mid+1,r);
while(i<=mid&&j<=r)
if(a[i]<=a[j]) b[k++]=a[i++];
else b[k++]=a[j++];
while(i<=mid)b[k++]=a[i++];
while(j<=r)b[k++]=a[j++];
for(int x=l;x<=r;x++)a[x]=b[x];
}
int main()
{
int n;cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
gb_sort(a,b,1,n);
for(int i=1;i<=n;i++)cout<<a[i]<<" ";
cout<<endl;
return 0;
}
二、归并排序算逆序对数
如题:
给定一个长度为 n 的整数数列,请你计算数列中的逆序对1的数量。
输入格式
第一行包含整数 n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000
代码如下:
#include<iostream>
using namespace std;
const int N=1e5+5;
int a[N],b[N];
long long res=0;
void gb_sort(int a[],int b[],int l,int r)
{
if(r-l<2)
{
if(r-l==1&&a[l]>a[r])swap(a[l],a[r]),res++;
return;
}
int mid=(l+r)>>1,i=l,j=mid+1,k=l;
gb_sort(a,b,l,mid),gb_sort(a,b,mid+1,r);
while(i<=mid&&j<=r)
if(a[i]<=a[j]) b[k++]=a[i++];
else
{
b[k++]=a[j++];
res+=mid-i+1;
}
while(i<=mid)b[k++]=a[i++];
while(j<=r)b[k++]=a[j++];
for(int x=l;x<=r;x++)a[x]=b[x];
}
int main()
{
int n;cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
gb_sort(a,b,1,n);
cout<<res<<endl;
return 0;
}
逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。 ↩︎