代价估算技术(Cost Estimation)是数据库优化器(Query Optimizer)在选择最优执行计划时所采用的重要手段。通过代价估算,优化器可以评估不同查询执行计划的相对开销,从而选择执行成本最低的方案。以下是代价估算技术的详细讲解。
1. 代价估算的基本概念
代价估算是通过计算查询执行过程中可能消耗的资源(如CPU、I/O、内存等)来评估每个执行计划的开销。数据库优化器使用代价模型来估算这些资源的消耗。
2. 代价模型的组成部分
2.1 选择率(Selectivity)
选择率表示查询中满足条件的数据比例。选择率通常由统计信息决定,如数据分布、索引等。
2.2 基数(Cardinality)
基数是指查询结果集的行数。基数估算是代价估算的关键,因为它直接影响I/O和CPU的消耗。
2.3 I/O代价
I/O代价是指读取和写入磁盘数据的开销,包括顺序读写和随机读写。I/O代价通常是数据库查询中最大的开销。
2.4 CPU代价
CPU代价是指处理数据的计算开销,包括解析、过滤、排序、聚合等操作的处理时间。
2.5 内存代价
内存代价是指查询执行过程中使用的内存资源,如缓存、排序缓冲区等。
3. 代价估算的步骤
3.1 统计信息的收集
数据库需要收集和维护数据表的统计信息,包括表的大小、行数、数据分布、列的最大最小值、直方图等。这些统计信息是代价估算的基础。
3.2 计算选择率
根据查询条件和统计信息,计算出满足条件的数据比例。例如,对于范围查询,选择率可以根据列的最大最小值和直方图来估算。
3.3 估算基数
基于选择率和表的总行数,估算查询结果集的基数。例如,如果表有1000行,选择率是0.1,那么基数就是100行。
3.4 计算I/O代价
根据基数和访问方法(如全表扫描、索引扫描),估算读取数据的I/O开销。对于顺序读写和随机读写,I/O代价会有所不同。
3.5 计算CPU代价
根据基数和操作类型,估算处理数据的CPU开销。例如,过滤和投影操作的CPU代价通常较低,而排序和聚合操作的CPU代价较高。
3.6 综合代价估算
将I/O代价、CPU代价和内存代价综合起来,得到每个执行计划的总代价。优化器根据总代价选择最优执行计划。
4. 代价估算的优化方法
4.1 索引选择
使用索引可以显著降低I/O代价。优化器需要估算索引扫描的代价,并与全表扫描的代价进行比较,选择开销较低的方法。
4.2 连接策略
对于多表连接查询,优化器需要选择合适的连接策略(如嵌套循环连接、排序-合并连接、哈希连接)。每种连接策略的代价不同,优化器会估算每种策略的开销,选择最优方案。
4.3 并行执行
对于大规模查询,可以采用并行执行来降低总执行时间。优化器需要估算并行执行的代价,包括并行度、并行开销等。
4.4 缓存利用
利用缓存可以减少I/O开销。优化器需要考虑缓存命中率,估算缓存带来的性能提升。
5. 示例
假设有一个表employees
,包含以下字段:id
、name
、department_id
、salary
。有以下查询:
SELECT * FROM employees WHERE salary > 50000;
5.1 统计信息
- 表
employees
有100,000行 salary
列的最小值为20,000,最大值为120,000salary
列的直方图显示数据大致均匀分布
5.2 计算选择率
选择率 = (120,000 - 50,000) / (120,000 - 20,000) = 0.7
5.3 估算基数
基数 = 100,000 * 0.7 = 70,000行
5.4 计算I/O代价
假设全表扫描的I/O代价为每1000行1次I/O操作,则I/O代价为70次I/O操作。
5.5 计算CPU代价
假设过滤操作的CPU代价为每1000行0.1秒,则CPU代价为7秒。
5.6 综合代价估算
总代价 = I/O代价 + CPU代价 = 70次I/O + 7秒CPU
结论
代价估算技术是数据库优化器选择最优执行计划的核心。通过对选择率、基数、I/O代价、CPU代价和内存代价的综合估算,优化器可以评估不同执行计划的相对开销,从而选择最优方案。了解和掌握代价估算技术,有助于数据库管理员和开发者优化查询性能,提高数据库系统的效率和响应速度。
产品简介
- 梧桐数据库(WuTongDB)是基于 Apache HAWQ 打造的一款分布式 OLAP 数据库。产品通过存算分离架构提供高可用、高可靠、高扩展能力,实现了向量化计算引擎提供极速数据分析能力,通过多异构存储关联查询实现湖仓融合能力,可以帮助企业用户轻松构建核心数仓和湖仓一体数据平台。
- 2023年6月,梧桐数据库(WuTongDB)产品通过信通院可信数据库分布式分析型数据库基础能力测评,在基础能力、运维能力、兼容性、安全性、高可用、高扩展方面获得认可。
点击访问:
梧桐数据库(WuTongDB)相关文章
梧桐数据库(WuTongDB)产品宣传材料
梧桐数据库(WuTongDB)百科