100233. 重新分装苹果 简单
分析:
排序+贪心
代码:
class Solution {
public:
int minimumBoxes(vector<int>& apple, vector<int>& capacity) {
int cnt = accumulate(apple.begin(), apple.end(), 0);
sort(capacity.begin(), capacity.end());
int i=capacity.size()-1;
for(;i>=0&&cnt>0;i--){
cnt-=capacity[i];
}
return capacity.size()-i-1;
}
};
100247. 幸福值最大化的选择方案 中等
分析:
排序+贪心。
每次选择当前幸福值最大的孩子,其余孩子幸福值均减小1,直至减小至0。
代码:
class Solution {
public:
long long maximumHappinessSum(vector<int>& happiness, int k) {
long long ans=0;
sort(happiness.begin(), happiness.end());
int i=happiness.size()-1,cnt=0;
while(k--){
ans+=(1LL*(max(happiness[i]-cnt,0)));
cnt++;i--;
}
return ans;
}
};
100251. 数组中的最短非公共子字符串 中等
分析:
代码:
利用map
实现哈希表,后续需要学习字符串哈希
class Solution {
public:
vector<string> shortestSubstrings(vector<string>& arr) {
unordered_map<string, int> m,mine;
vector<string> ans;
int n=arr.size();
for(int i=0;i<n;i++){
int l=arr[i].length();
mine.clear();
for(int j=1;j<=l;j++){
for(int k=0;k+j-1<l;k++){
string s= arr[i].substr(k,j);
if(mine[s]==0){ // 同一个字符串中的字符只计算一次
m[s]++;
mine[s]++;
}
}
}
}
for(int i=0;i<n;i++){
int l=arr[i].length();
for(int j=1;j<=l;j++){
vector<string> a;
for(int k=0;k+j-1<l;k++){
string s = arr[i].substr(k, j);
if(m[s]==1){
a.push_back(s);
}
}
if(a.size()>0){
sort(a.begin(),a.end());
ans.push_back(a[0]);
}
if(ans.size()>i) break;
}
if(ans.size()<=i) ans.push_back("");
}
return ans;
}
};
利用 string.find()
来进行优化,去除哈希表(利用map实现hash)的使用。
class Solution {
public:
vector<string> shortestSubstrings(vector<string>& arr) {
int n = arr.size();
vector<string> ans(n);
for(int i=0;i<n;i++){
for(int len=1;len<=arr[i].size();len++){
for(int j=0;j+len<=arr[i].size();j++){
string s = arr[i].substr(j,len);
bool flag = true;
for(int k=0;k<n;k++) if(k!=i && arr[k].find(s) != string::npos) {flag=false; break;}
if(flag && (ans[i].empty() || s < ans[i])) ans[i]=s;
}
if(ans[i].size() > 0) break;
}
}
return ans;
}
};
100216. K 个不相交子数组的最大能量值 困难
分析:
前缀和+划分DP,目前还在尝试理解中。
代码:
class Solution {
public:
long long maximumStrength(vector<int>& nums, int k) {
int n = nums.size();
vector<long long> s(n + 1);
for (int i = 0; i < n; i++) {
s[i + 1] = s[i] + nums[i];// 前缀和
}
vector<vector<long long>> f(k + 1, vector<long long>(n + 1)); //dp[i][j]表示将0~j-1分成i段
for (int i = 1; i <= k; i++) {
f[i][i - 1] = LLONG_MIN;
long long mx = LLONG_MIN;
int w = (k - i + 1) * (i % 2 ? 1 : -1);
// 要保证前0~j-1至少有i个元素,同时保证j~n-1至少有k-i个元素
for (int j = i; j <= n - k + i; j++) {
// 维护 i-1 到 当前 j-1 的最大值
// 选择 nums[j-1]且为 第i个子数组的最右端元素,但第 i 个子数组有多少,需要从 i-1 开始一直到 j-1 计算
mx = max(mx, f[i - 1][j - 1] - s[j - 1] * w);
// 选择当前值的最大值,选nums[j-1](包含怎么选)或者不选
f[i][j] = max(f[i][j - 1], s[j] * w + mx);
}
}
return f[k][n];
}
};