【LeetCode周赛】第388场周赛

文章探讨了四个与IT技术相关的编程问题:通过排序和贪心策略解决重新分装苹果和幸福值最大化问题,以及利用哈希表和字符串操作寻找最短非公共子字符串,最后涉及K个不相交子数组的最大能量值计算,使用了前缀和和动态规划方法。
摘要由CSDN通过智能技术生成

100233. 重新分装苹果 简单

100233. 重新分装苹果

分析:
排序+贪心

代码:

class Solution {
public:
    int minimumBoxes(vector<int>& apple, vector<int>& capacity) {
        int cnt = accumulate(apple.begin(), apple.end(), 0);
        sort(capacity.begin(), capacity.end());
        int i=capacity.size()-1;
        for(;i>=0&&cnt>0;i--){
            cnt-=capacity[i];
        }
        return capacity.size()-i-1;
    }
};


100247. 幸福值最大化的选择方案 中等

100247. 幸福值最大化的选择方案

分析:
排序+贪心。
每次选择当前幸福值最大的孩子,其余孩子幸福值均减小1,直至减小至0。

代码:

class Solution {
public:
    long long maximumHappinessSum(vector<int>& happiness, int k) {
        long long ans=0;
        sort(happiness.begin(), happiness.end());
        int i=happiness.size()-1,cnt=0;
        while(k--){
            ans+=(1LL*(max(happiness[i]-cnt,0)));
            cnt++;i--;
        }
        return ans;
    }
};


100251. 数组中的最短非公共子字符串 中等

100251. 数组中的最短非公共子字符串

分析:

代码:
利用map实现哈希表,后续需要学习字符串哈希

class Solution {
public:
    vector<string> shortestSubstrings(vector<string>& arr) {
        unordered_map<string, int> m,mine;
        vector<string> ans;
        int n=arr.size();
        for(int i=0;i<n;i++){
            int l=arr[i].length();
            mine.clear();
            for(int j=1;j<=l;j++){
                for(int k=0;k+j-1<l;k++){
                    string s= arr[i].substr(k,j);
                    if(mine[s]==0){ // 同一个字符串中的字符只计算一次
                        m[s]++;
                        mine[s]++;
                    }
                }
            }
        }
        for(int i=0;i<n;i++){
            int l=arr[i].length();
            for(int j=1;j<=l;j++){
                vector<string> a;
                for(int k=0;k+j-1<l;k++){
                    string s = arr[i].substr(k, j);
                    if(m[s]==1){
                        a.push_back(s);
                    }
                }
                if(a.size()>0){
                    sort(a.begin(),a.end());
                    ans.push_back(a[0]);
                }
                if(ans.size()>i) break;
            }
            if(ans.size()<=i) ans.push_back("");
        }
        return ans;
    }
};

利用 string.find()来进行优化,去除哈希表(利用map实现hash)的使用。

class Solution {
public:
    vector<string> shortestSubstrings(vector<string>& arr) {
        int n = arr.size();
        vector<string> ans(n);
        for(int i=0;i<n;i++){
            for(int len=1;len<=arr[i].size();len++){
                for(int j=0;j+len<=arr[i].size();j++){
                    string s = arr[i].substr(j,len);
                    bool flag = true;
                    for(int k=0;k<n;k++) if(k!=i && arr[k].find(s) != string::npos) {flag=false; break;}
                    if(flag && (ans[i].empty() || s < ans[i])) ans[i]=s;
                }
                if(ans[i].size() > 0) break;
            }
        }
        return ans;
    }
};


100216. K 个不相交子数组的最大能量值 困难

100216. K 个不相交子数组的最大能量值

分析:
前缀和+划分DP,目前还在尝试理解中。

代码:

class Solution {
public:
    long long maximumStrength(vector<int>& nums, int k) {
        int n = nums.size();
        vector<long long> s(n + 1);
        for (int i = 0; i < n; i++) {
            s[i + 1] = s[i] + nums[i];// 前缀和
        }
        vector<vector<long long>> f(k + 1, vector<long long>(n + 1)); //dp[i][j]表示将0~j-1分成i段
        for (int i = 1; i <= k; i++) {
            f[i][i - 1] = LLONG_MIN;
            long long mx = LLONG_MIN;
            int w = (k - i + 1) * (i % 2 ? 1 : -1);

            // 要保证前0~j-1至少有i个元素,同时保证j~n-1至少有k-i个元素
            for (int j = i; j <= n - k + i; j++) {
                // 维护 i-1 到 当前 j-1 的最大值
                // 选择 nums[j-1]且为 第i个子数组的最右端元素,但第 i 个子数组有多少,需要从 i-1 开始一直到 j-1 计算 
                mx = max(mx, f[i - 1][j - 1] - s[j - 1] * w);
                // 选择当前值的最大值,选nums[j-1](包含怎么选)或者不选
                f[i][j] = max(f[i][j - 1], s[j] * w + mx);
            }
        }
        return f[k][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值