一,数学模型分类
三年的数学建模经验,两次国奖,最近疫情待家无事,有些许怀恋无忧无虑的生活,想以此纪念一下。本文只做罗列以及适当说明,想要化为己用得深入调研。
首先,既然是数学建模,就离不开模型,具体的模型有哪些呢?
按建立模型的数学方法,数学模型主要分为以下几种:
几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。
想要完成一篇优秀的数模论文,我们需要对建模方法有基本的了解,审题时可以找出最适合的方法。
二、建模方法分类
常用的方法有:
1.类比法、2.二分法、3.量纲分析法、4.图论法;5.差分法、6.变分法、7.数据拟合法、8.回归分析法
9.数学规划法(线性规划,非线性规划,整数规划,动态规划,目标规划)
10.机理分析、11.排队方法、12.决策方法,13.层次分析法、14.主成分分析法、15.因子分析法
16.聚类分析法、17.TOPSIS法、18.模糊评判方法、19.时间序列方法;
20.灰色理论方法、21. 蒙特卡罗法、22. 现代优化算法(模拟退火算法、遗传算法、神经网络法)等。
别看方法有这么多,但究其实际操作,了解主要原理即可,更应该看重在何处,如何使用模型。
毕竟比赛考察的是解决问题的思维,而不是单纯的模型,算法。
1、类比法
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系。
在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。
2、二分法
二分法常用于数据的排序与查找,当数据量很大时宜采用该方法。
想象一本书找到其中一页有什么办法?
是不是要先从中间打开看页数是比目标页数大还是小,再选择靠近的一边
另一边再从中间打开,看页数是比目标页数大还是小。。。
如此反复,直至找到。即为简单的二分法。
3、量纲分析法
量纲分析法常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化。
无量纲化是根据量纲分析思想,恰当地选择特征尺度,将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
想像一个单位为吨,一个单位为米,能相加减或者比大小吗?
去量纲的目的就是可以简化的得到