第七周学习笔记

第七周学习笔记

本周的主要学习工作

1.CS229

[课程地址]

第十九讲,微分动态规划
主要内容
  • Debug强化学习算法
    假设我们要建立一个直升机的强化学习算法

  • 建立一个直升机的模拟器

  • 选择回报函数

  • 使用强化学习算法,得到策略
    假如表现很差,怎么办?

  • 诊断

    • 如果学习到的策略在模拟器中效果不错,但在现实中表现不佳,则是模拟器的问题
    • 如果人类策略的值函数大于学习结果,则是强化学习方法的不佳
    • 如果学习结果的值函数大于人类结果,但现实中表现不佳,则是回报函数的问题
      1.升级模拟器
      2.改进R
      3.改进RL算法
  • 线性二次调节控制(Linear-Quadratic Regulation Control)

  • 微分动态规划(differential dynamic programming)

  • Kalman滤波 线性二次高斯控制(Linear-Quadratic Gaussian Control)

第二十讲,策略搜索
主要内容
  • POMDP
  • 策略搜索(Policy search)
  • Pegasus,固定随机模拟器的伪随机序列

2.Problem Set #1

(a) J ( θ ) = 1 2 ( X θ − y ) T ( X θ − y ) J(\theta)=\dfrac{1}{2}(X\theta-y)^T(X\theta-y) J(θ)=21(Xθy)T(Xθy) ∇ = ∂ J ∂ θ = X T ( X θ − y ) \nabla=\dfrac{\partial{J}}{\partial{\theta}}=X^T(X\theta-y) =θJ=XT(Xθy) H = ∂ 2 J ∂ θ 2 = X T X H=\dfrac{\partial{^2J}}{\partial{\theta}^2}=X^TX H=θ22J=XTX
(b)对于任意的初始值 θ 0 \theta_0 θ0
θ 1 = θ 0 − H − 1 ∇ = ( X T X ) − 1 X T y \theta_1=\theta_0-H^{-1}\nabla=(X^TX)^{-1}X^Ty θ1=θ0H1=(XTX)1XTy
一次迭代即可收敛
2.已在之前的实验中完成
代码在这
3.
( a ) J ( Θ ) = 1 2 ∥ Θ T X − y ∥ 2 J(\Theta)=\dfrac{1}{2}\left\| \Theta^TX-y\right\|^2 J(Θ)=21ΘTXy2
( b ) Θ = ( X T X ) − 1 X T Y \Theta=(X^TX)^{-1}X^TY Θ=(XTX)1XTY
( c )
对于任意j
θ j = ( X T X ) − 1 X T y j \theta_j=(X^TX)^{-1}X^Ty_j θj=(XTX)1XTyj
写成矩阵形式为
Θ = ( X T X ) − 1 X T Y \Theta=(X^TX)^{-1}X^TY Θ=(XTX)1XTY
即分别线性回归和一起线性回归的结果相同
4.
( a )
l ( φ ) = l o g ∏ i = 1 m [ ( 1 − ϕ y ) p ( x ( i ) ∣ y ( i ) = 0 ) ] ( 1 − y ( i ) ) [ ϕ y p ( x ( i ) ∣ y ( i ) = 1 ) ] y ( i ) = ∑ i = 1 m ( 1 − y ( i ) ) ( l o g ( 1 − ϕ y ) + ∑ j = 1 n ( x j l o g ϕ j ∣ y = 0 + ( 1 − x j ) l o g ( 1 − ϕ j ∣ y = 0 ) ) ) + y ( i ) ( l o g ϕ y + ∑ j = 1 n x j l o g ϕ j ∣ y = 1 + ( 1 − x j ) l o g ( 1 − ϕ j ∣ y = 1 ) ) \begin{aligned} l(\varphi)&=log\prod_{i=1}^{m}[(1-\phi_y)p(x^{(i)}|y^{(i)}=0)]^{(1-y^{(i)})}[\phi_{y}p(x^{(i)}|y^{(i)}=1)]^{y^{(i)}} \\ &=\sum_{i=1}^{m}(1-y^{(i)})\Bigl( log(1-\phi_y)+\sum_{j=1}^{n}\bigl( x_jlog\phi_{j|y=0}+(1-x_j)log(1-\phi_{j|y=0}) \bigr) \Bigr)\\&+y^{(i)}\Bigl({log\phi_y}+\sum_{j=1}^{n}x_jlog\phi_{j|y=1}+(1-x_j)log(1-\phi_{j|y=1})\Bigr) \end{aligned} l(φ)=logi=1m[(1ϕy)p(x(i)y(i)=0)](1y(i))[ϕyp(x(i)y(i)=1)]y(i)=i=1m(1y(i))(log(1ϕy)+j=1n(xjlogϕjy=0+(1xj)log(1ϕjy=0)))+y(i)(logϕy+j=1nxjlogϕjy=1+(1xj)log(1ϕjy=1))
( b )
∂ l ( ϕ ) ∂ ϕ j ∣ y = 0 = ∑ i = 1 m ( 1 − y ( i ) ) x j ( i ) ϕ j ∣ y = 0 − ( 1 − y ( i ) ) ( 1 − x j ( i ) ) 1 − ϕ j ∣ y = 0 \dfrac{\partial{l(\phi)}}{\partial{\phi_{j|y=0}}}=\sum_{i=1}^{m}\dfrac{(1-y^{(i)})x_j^{(i)}}{\phi_{j|y=0}}-\dfrac{(1-y^{(i)})(1-x_j^{(i)})}{1-\phi_{j|y=0}} ϕjy=0l(ϕ)=i=1mϕjy=0(1y(i))xj(i)1ϕjy=0(1y(i))(1xj(i)) ∂ l ( ϕ ) ∂ ϕ j ∣ y = 1 = ∑ i = 1 m y ( i ) x j ( i ) ϕ j ∣ y = 1 − y ( i ) ( 1 − x j ) 1 − ϕ j ∣ y = 1 \dfrac{\partial{l(\phi)}}{\partial{\phi_{j|y=1}}}=\sum_{i=1}^{m}\dfrac{y^{(i)}x_j^{(i)}}{\phi_{j|y=1}}-\dfrac{y^{(i)}(1-x_j)}{1-\phi_{j|y=1}} ϕjy=1l(ϕ)=i=1mϕjy=1y(i)xj(i)1ϕjy=1y(i)(1xj) ∂ l ( ϕ ) ∂ ϕ y = ∑ i = 1 m − 1 − y ( i ) 1 − ϕ y + y ( i ) ϕ y \dfrac{\partial{l(\phi)}}{\partial{\phi_y}}=\sum_{i=1}^{m}-\dfrac{1-y^{(i)}}{1-\phi_y}+\dfrac{y^{(i)}}{\phi_y} ϕyl(ϕ)=i=1m1ϕy1y(i)+ϕyy(i)
令以上偏导数都等于0,得
ϕ j ∣ y = 0 = ∑ i = 1 m 1 { y ( i ) = 0 } x j ( i ) ∑ i = 1 m 1 { y ( i ) = 0 } \phi_{j|y=0}=\dfrac{\sum_{i=1}^{m}1\{ y^{(i)}=0\}x^{(i)}_j}{\sum_{i=1}^{m}1\{ y^{(i)}=0\}} ϕjy=0=i=1m1{y(i)=0}i=1m1{y(i)=0}xj(i) ϕ j ∣ y = 1 = ∑ i = 1 m 1 { y ( i ) = 1 } x j ( i ) ∑ i = 1 m 1 { y ( i ) = 1 } \phi_{j|y=1}=\dfrac{\sum_{i=1}^{m}1\{ y^{(i)}=1\}x^{(i)}_j}{\sum_{i=1}^{m}1\{ y^{(i)}=1\}} ϕjy=1=i=1m1{y(i)=1}i=1m1{y(i)=1}xj(i) ϕ y = ∑ i = 1 m y ( i ) m \phi_y=\dfrac{\sum_{i=1}^{m}y^{(i)}}{m} ϕy=mi=1my(i)
( c )
p ( y = 1 ∣ x ) ≥ p ( y = 0 ∣ x ) ⟺ p ( x ∣ y = 1 ) p ( y ) ≥ p ( x ∣ y = 0 ) p ( y ) ⟺ p ( x ∣ y = 1 ) ϕ y ≥ p ( x ∣ y = 0 ) ( 1 − ϕ y ) ⟺ ∏ j = 1 n p ( x j ∣ y = 1 ) ϕ y ≥ ∏ j = 1 n p ( x j ∣ y = 0 ) ( 1 − ϕ y ) ⟺ ∏ j = 1 n ϕ j ∣ y = 1 x j ( 1 − ϕ j ∣ y = 1 ) 1 − x j ϕ y ≥ ∏ j = 1 n ϕ j ∣ y = 0 x j ( 1 − ϕ j ∣ y = 0 ) 1 − x j ( 1 − ϕ y ) ⟺ ∑ j = 1 n x j l o g ϕ j ∣ y = 1 + ( 1 − x j ) l o g ( 1 − ϕ j ∣ y = 1 ) + l o g ϕ y 1 − ϕ y ≥ ∑ j = 1 n x j l o g ϕ j ∣ y = 0 x j + ( 1 − x j ) ( 1 − ϕ j ∣ y = 0 ) 1 − x j ⟺ ∑ j = 1 n x j l o g ϕ j ∣ y = 1 ϕ j ∣ y = 0 + ( 1 − x j ) l o g 1 − ϕ j ∣ y = 1 1 − ϕ j ∣ y = 0 + l o g ϕ y 1 − ϕ y ≥ 0 ⟺ ∑ j = 1 n x j l o g ϕ j ∣ y = 1 ( 1 − ϕ j ∣ y = 0 ) ϕ j ∣ y = 0 ( 1 − ϕ j ∣ y = 1 ) + ∑ j = 1 n l o g 1 − ϕ j ∣ y = 1 1 − ϕ j ∣ y = 0 + l o g ϕ y 1 − ϕ y ≥ 0 \begin{aligned} p(y=1|x)\geq p(y=0|x)& \Longleftrightarrow p(x|y=1)p(y)\geq p(x|y=0)p(y)\\ &\Longleftrightarrow p(x|y=1)\phi_y\geq p(x|y=0)(1-\phi_y)\\ &\Longleftrightarrow \prod_{j=1}^{n}p(x_j|y=1)\phi_y\geq \prod_{j=1}^{n}p(x_j|y=0)(1-\phi_y)\\ &\Longleftrightarrow \prod_{j=1}^{n}\phi_{j|y=1}^{x_j}(1-\phi_{j|y=1})^{1-x_j}\phi_y\geq\prod_{j=1}^{n}\phi_{j|y=0}^{x_j}(1-\phi_{j|y=0})^{1-x_j}(1-\phi_y)\\ &\Longleftrightarrow \sum_{j=1}^{n}x_jlog\phi_{j|y=1}+(1-x_j)log(1-\phi_{j|y=1})+log\dfrac{\phi_y}{1-\phi_y}\geq\sum_{j=1}^{n}x_jlog\phi_{j|y=0}^{x_j}+(1-x_j)(1-\phi_{j|y=0})^{1-x_j}\\ &\Longleftrightarrow \sum_{j=1}^{n}x_jlog\dfrac{\phi_{j|y=1}}{\phi_{j|y=0}}+(1-x_j)log\dfrac{1-\phi_{j|y=1}}{1-\phi_{j|y=0}}+log\dfrac{\phi_y}{1-\phi_y}\geq 0\\ & \Longleftrightarrow \sum_{j=1}^{n}x_jlog\dfrac{\phi_{j|y=1}(1-\phi_{j|y=0})}{\phi_{j|y=0}(1-\phi_{j|y=1})}+\sum_{j=1}^{n}log\dfrac{1-\phi_{j|y=1}}{1-\phi_{j|y=0}}+log\dfrac{\phi_y}{1-\phi_y}\geq 0 \end{aligned} p(y=1x)p(y=0x)p(xy=1)p(y)p(xy=0)p(y)p(xy=1)ϕyp(xy=0)(1ϕy)j=1np(xjy=1)ϕyj=1np(xjy=0)(1ϕy)j=1nϕjy=1xj(1ϕjy=1)1xjϕyj=1nϕjy=0xj(1ϕjy=0)1xj(1ϕy)j=1nxjlogϕjy=1+(1xj)log(1ϕjy=1)+log1ϕyϕyj=1nxjlogϕjy=0xj+(1xj)(1ϕjy=0)1xjj=1nxjlogϕjy=0ϕjy=1+(1xj)log1ϕjy=01ϕjy=1+log1ϕyϕy0j=1nxjlogϕjy=0(1ϕjy=1)ϕjy=1(1ϕjy=0)+j=1nlog1ϕjy=01ϕjy=1+log1ϕyϕy0
所以最终得到的是一个线性分类器
5.
( a )
p ( y ; ϕ ) = ( 1 − ϕ ) y − 1 ϕ = e x p { l o g ( 1 − ϕ ) y − l o g ϕ 1 − ϕ } p(y;\phi)=(1-\phi)^{y-1}\phi=exp\{log(1-\phi)y-log\dfrac{\phi}{1-\phi}\} p(y;ϕ)=(1ϕ)y1ϕ=exp{log(1ϕ)ylog1ϕϕ}
所以
b ( y ) = 1 b(y)=1 b(y)=1 η = l o g ( 1 − ϕ ) \eta=log(1-\phi) η=log(1ϕ) T ( y ) = y T(y)=y T(y)=y a ( η ) = η + l o g ( 1 − e η ) a(\eta)=\eta+log(1-e^{\eta}) a(η)=η+log(1eη)
( b ) g ( η ) = 1 1 − e η g(\eta)=\dfrac{1}{1-e^{\eta}} g(η)=1eη1 h θ ( x ) = 1 1 − e θ T x h_{\theta}(x)=\dfrac{1}{1-e^{\theta^Tx}} hθ(x)=1eθTx1
( c )
y = 1 1 − e θ T x y=\dfrac{1}{1-e^{\theta^{T}x}} y=1eθTx1 l ( θ ) = e θ T x ( y − 1 ) ( 1 − e θ T x ) l(\theta)=e^{\theta^Tx(y-1)}(1-e^{\theta^Tx}) l(θ)=eθTx(y1)(1eθTx) l o g l ( θ ) = θ T x ( y − 1 ) + l o g ( 1 − e θ T x ) logl(\theta)=\theta^Tx(y-1)+log(1-e^{\theta^Tx} ) logl(θ)=θTx(y1)+log(1eθTx) ∂ l o g l ( θ ) ∂ θ = ( y − 1 1 − e θ T x ) x \dfrac{\partial{logl(\theta)}}{\partial{\theta}}=(y-\dfrac{1}{1-e^{\theta^Tx}})x θlogl(θ)=(y1eθTx1)x
权值更新公式为
θ k + 1 = θ k − α ∂ J ∂ θ \theta_{k+1}=\theta_{k}-\alpha\dfrac{\partial{J}}{\partial{\theta}} θk+1=θkαθJ

Problem Set #2

( a )
J ( θ ) = 1 2 ( X θ − y ) T ( X θ − y ) + λ 2 θ T θ J(\theta)=\dfrac{1}{2}(X\theta-y)^T(X\theta-y)+\dfrac{\lambda}{2}\theta^T\theta J(θ)=21(Xθy)T(Xθy)+2λθTθ ∂ J ∂ θ = X T ( X θ − y ) + λ θ \dfrac{\partial{J}}{\partial{\theta}}=X^T(X\theta-y)+\lambda\theta θJ=XT(Xθy)+λθ
J J J是凸函数,令偏导数为零 θ = ( X T X + λ I ) − 1 X T y \theta=(X^TX+\lambda I)^{-1}X^Ty θ=(XTX+λI)1XTy
( b ) θ T x = y T X ( λ I + X T X ) − 1 x = y T ( λ I + X X T ) − 1 X x \theta^Tx=y^TX(\lambda I+X^TX)^{-1}x=y^T(\lambda I+XX^T)^{-1}Xx θTx=yTX(λI+XTX)1x=yT(λI+XXT)1Xx
ϕ ( x ( i ) ) \phi(x^{(i)}) ϕ(x(i))代替X中的每一列,则无需计算出每个 ϕ ( x ( i ) ) \phi(x^{(i)}) ϕ(x(i)),只要计算出 ϕ ( x ( i ) ) \phi(x^{(i)}) ϕ(x(i))之间的内积即可。
此外
( λ I + B A ) − 1 B = 1 λ ( B A λ + B A B A λ 2 + ⋅ ⋅ ⋅ ) B = B λ ( A B λ + A B A B λ 2 + ⋅ ⋅ ⋅ ) = B ( λ I + A B ) − 1 (\lambda I + BA)^{-1}B=\dfrac{1}{\lambda}(\dfrac{BA}{\lambda}+\dfrac{BABA}{\lambda^2}+\cdot\cdot\cdot)B=\dfrac{B}{\lambda}(\dfrac{AB}{\lambda}+\dfrac{ABAB}{\lambda^2}+\cdot\cdot\cdot)=B(\lambda I+AB)^{-1} (λI+BA)1B=λ1(λBA+λ2BABA+)B=λB(λAB+λ2ABAB+)=B(λI+AB)1
2.
( a )
假设该最优化问题的解中,存在 ξ j &lt; 0 \xi_j&lt;0 ξj<0,因为
y ( j ) ( w T x ( j ) + b ) ≥ 1 − ξ j ≥ 1 y^{(j)}(w^Tx^{(j)}+b)\geq1-\xi_j\geq1 y(j)(wTx(j)+b)1ξj1
若固定其他参数不变,令 ξ j = 0 \xi_j=0 ξj=0可以得到使目标函数更小的解,故当前解不是局部极小值,所以 ξ j ≥ 0 \xi_j\geq0 ξj0对于任意 j j j成立,因此,是否增加 ξ j ≥ 0 \xi_j\geq0 ξj0的约束不影响问题的解。
( b )
L ( w , b , ξ , α ) = 1 2 ∥ w ∥ 2 + C 2 ∑ i = 1 m ξ i 2 − ∑ i = 1 m α i ( y ( i ) ( w T x ( i ) + b ) − 1 + ξ i ) α i ≥ 0 , i = 1 , 2 , . . , m L(w,b,\xi,\alpha)=\dfrac{1}{2}\left\| w\right \|^2+\dfrac{C}{2}\sum_{i=1}^{m}\xi_i^{2}-\sum_{i=1}^{m}\alpha_i(y^{(i)}(w^Tx^{(i)}+b)-1+\xi_i )\\ \alpha_i\geq0,i=1,2,..,m L(w,b,ξ,α)=21w2+2Ci=1mξi2i=1mαi(y(i)(wTx(i)+b)1+ξi)αi0,i=1,2,..,m
( c )
∇ w L = w − ∑ i = 1 m α i y ( i ) x ( i ) = 0 ∇ b = ∑ i = 1 m α i y ( i ) = 0 ∇ ξ = C ξ − α = 0 \nabla_wL=w-\sum_{i=1}^{m}\alpha_iy^{(i)}x^{(i)}=0\\ \nabla_b=\sum_{i=1}^{m}\alpha_iy^{(i)}=0\\ \nabla_\xi=C\xi-\alpha=0 wL=wi=1mαiy(i)x(i)=0b=i=1mαiy(i)=0ξ=Cξα=0
( d )
根据( c )
w = ∑ i = 1 m α i y ( i ) x ( i ) ∑ i = 1 m α i y ( i ) = 0 c ξ i = α i w=\sum_{i=1}^{m}\alpha_iy^{(i)}x^{(i)}\\ \sum_{i=1}^{m}\alpha_iy^{(i)}=0\\ c\xi_i=\alpha_i w=i=1mαiy(i)x(i)i=1mαiy(i)=0cξi=αi L ( w , b , ξ , α ) = 1 2 ∥ w ∥ 2 + C 2 ∑ i = 1 m ξ i 2 − ∑ i = 1 m α i ( y ( i ) ( w T x ( i ) + b ) − 1 + ξ i ) = 1 2 ( ∑ i = 1 m α i y ( i ) x ( i ) ) T ( ∑ i = 1 m α i y ( i ) x ( i ) ) + 1 2 C ∑ i = 1 m α i 2 − ∑ i = 1 m α i y ( i ) ( ∑ j = 1 m α j y ( i ) x ( j ) ) T x ( i ) + ∑ i = 1 m α i − 1 C ∑ i = 1 m α i 2 = − 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y ( i ) y ( j ) ( x ( i ) ) T x ( j ) − 1 2 C ∑ i = 1 m α i 2 + ∑ i = 1 m α i \begin{aligned} L(w,b,\xi,\alpha)&amp;=\dfrac{1}{2}\left\| w\right \|^2+\dfrac{C}{2}\sum_{i=1}^{m}\xi_i^{2}-\sum_{i=1}^{m}\alpha_i(y^{(i)}(w^Tx^{(i)}+b)-1+\xi_i)\\ &amp;=\dfrac{1}{2}(\sum_{i=1}^{m}\alpha_iy^{(i)}x^{(i)})^T(\sum_{i=1}^{m}\alpha_iy^{(i)}x^{(i)})+\dfrac{1}{2C}\sum_{i=1}^{m}\alpha_i^2-\sum_{i=1}^{m}\alpha_iy^{(i)}(\sum_{j=1}^{m}\alpha_jy^{(i)}x^{(j)})^Tx^{(i)}+\sum_{i=1}^{m}\alpha_i-\dfrac{1}{C}\sum_{i=1}^m\alpha_i^2\\ &amp;=-\dfrac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy^{(i)}y^{(j)}(x^{(i)})^Tx^{(j)}-\dfrac{1}{2C}\sum_{i=1}^{m}\alpha_{i}^2+\sum_{i=1}^{m}\alpha_i \end{aligned} L(w,b,ξ,α)=21w2+2Ci=1mξi2i=1mαi(y(i)(wTx(i)+b)1+ξi)=21(i=1mαiy(i)x(i))T(i=1mαiy(i)x(i))+2C1i=1mαi2i=1mαiy(i)(j=1mαjy(i)x(j))Tx(i)+i=1mαiC1i=1mαi2=21i=1mj=1mαiαjy(i)y(j)(x(i))Tx(j)2C1i=1mαi2+i=1mαi
原问题的对偶问题为
max ⁡ α W ( α ) = − 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y ( i ) y ( j ) ( x ( i ) ) T x ( j ) − 1 2 C ∑ i = 1 m α i 2 + ∑ i = 1 m α i s . t . ∑ i = 1 m α i y ( i ) = 0 α i ≥ 0 , i = 1 , 2 , . . , m \max_{\alpha}W(\alpha)=-\dfrac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy^{(i)}y^{(j)}(x^{(i)})^Tx^{(j)}-\dfrac{1}{2C}\sum_{i=1}^{m}\alpha_{i}^2+\sum_{i=1}^{m}\alpha_i\\ s.t. \sum_{i=1}^{m}\alpha_iy^{(i)}=0\\ \alpha_i\geq0,i=1,2,..,m αmaxW(α)=21i=1mj=1mαiαjy(i)y(j)(x(i))Tx(j)2C1i=1mαi2+i=1mαis.t.i=1mαiy(i)=0αi0,i=1,2,..,m
3.
( a )
∀ i \forall i i,令 α i = 1 \alpha_i=1 αi=1,令 b b b=0,则 ∀ k \forall k k
∣ f ( x ( k ) ) − y ( k ) ∣ = ∣ ∑ i = 1 , i ≠ k m y ( i ) e − ∥ x ( i ) − x ( k ) ∥ τ 2 ∣ ≤ ∑ i = 1 , i ≠ k m ∣ e − ∥ x ( i ) − x ( k ) ∥ τ 2 ∣ ≤ ( m − 1 ) e − ϵ τ 2 \begin{aligned} \left|f(x^{(k)})-y^{(k)} \right|=\left| \sum_{i=1,i\neq k}^{m}y^{(i)}e^{-\frac{\left\| x^{(i)} - x^{(k)} \right\|}{\tau^2}} \right| \leq\sum_{i=1,i\neq k}^{m}\left| e^{-\frac{\left\| x^{(i)} - x^{(k)} \right\|}{\tau^2}} \right| \leq(m-1)e^{-\frac{\epsilon}{\tau^2}} \end{aligned} f(x(k))y(k)=i=1,i̸=kmy(i)eτ2x(i)x(k)i=1,i̸=kmeτ2x(i)x(k)(m1)eτ2ϵ
只要取 τ &lt; ϵ l o g ( m − 1 ) \tau\lt \sqrt{\dfrac{\epsilon}{log(m-1)}} τ<log(m1)ϵ
就有
∣ f ( x ( k ) ) − y ( k ) ∣ ≤ ( m − 1 ) e − ϵ τ 2 &lt; 1 \left|f(x^{(k)})-y^{(k)} \right| \leq(m-1)e^{-\frac{\epsilon}{\tau^2}}\lt 1 f(x(k))y(k)(m1)eτ2ϵ<1
( b )问题有误,原意应该是问没有松弛变量时能否达到零误差
可以,( a )中已经找到了达成零误差的解,由于SVM损失函数是凸函数,故必定可以找到那个解。
( c )
不一定,我们可以通过减小C来使得优化过程更偏向得到间隔更大但带有一定训练误差的解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值