2023 香山杯 --- Crypto wp

题目

import os
import gmpy2
from Crypto.Util.number import *
import random
from secrets import flag
def pad(s,l):
    return s + os.urandom(l - len(s))
def gen():
    g = getPrime(8)
    while True:
        p = g * random.getrandbits(138) + 1
        if isPrime(p):
            break
    while True:
        q = g * random.getrandbits(138) + 1
        if isPrime(q):
            break
    N = p ** 5 * q
    phi = p ** 4 * (p - 1) * (q - 1)
    d = random.getrandbits(256)
    e = inverse(d, phi)
    E = e * g
    hint = gmpy2.gcd(E, phi)
    return N, E, hint



flag = pad(flag,64)
m = bytes_to_long(flag)
n,e,hint = gen()
c = pow(m,e,n)
print(f'hint = {hint}')
print(f'n = {n}')
print(f'e = {e}')
print(f'c = {c}')
# hint = 251
# n = 108960799213330048807537253155955524262938083957673388027650083719597357215238547761557943499634403020900601643719960988288543702833581456488410418793239589934165142850195998163833962875355916819854378922306890883033496525502067124670576471251882548376530637034077
# e = 3359917755894163258174451768521610910491402727660720673898848239095553816126131162471035843306464197912997253011899806560624938869918893182751614520610693643690087988363775343761651198776860913310798127832036941524620284804884136983215497742441302140070096928109039
# c = 72201537621260682675988549650349973570539366370497258107694937619698999052787116039080427209958662949131892284799148484018421298241124372816425123784602508705232247879799611203283114123802597553853842227351228626180079209388772101105198454904371772564490263034162

解题思路

根据题目代码,得到如下信息
p = g ∗ a + 1 , q = g ∗ b + 1 p = g*a+1,q = g*b+1 p=ga+1,q=gb+1
E = e g E = eg E=eg
p h i = p 4 ( p − 1 ) ∗ ( q − 1 ) = p 4 g 2 a b phi = p^4(p-1)*(q-1)=p^4g^2ab phi=p4(p1)(q1)=p4g2ab
又因为 g c d ( E , p h i ) = h i n t = 251 gcd(E,phi) = hint=251 gcd(E,phi)=hint=251
由此得到, g = 251 g = 251 g=251
进而可以得到 e = E g e = \frac{E}{g} e=gE
根据论文
New attacks on RSA with Moduli N = p r q N = p ^rq N=prq
部分
在这里插入图片描述
我们可以将 e d ≡ 1   m o d   p 4 ( p − 1 ) ∗ ( q − 1 ) ed \equiv 1 \space mod \space p^4(p-1)*(q-1) ed1 mod p4(p1)(q1)
转化为
e d ≡ 1   m o d   p 4 ed \equiv 1 \space mod \space p^4 ed1 mod p4
由此可以构建一个多项式环
f = e d − 1   m o d   p 4 f = ed-1 \space mod \space p^4 f=ed1 mod p4
其中d为256bit

#sage 
n = 108960799213330048807537253155955524262938083957673388027650083719597357215238547761557943499634403020900601643719960988288543702833581456488410418793239589934165142850195998163833962875355916819854378922306890883033496525502067124670576471251882548376530637034077
e = 3359917755894163258174451768521610910491402727660720673898848239095553816126131162471035843306464197912997253011899806560624938869918893182751614520610693643690087988363775343761651198776860913310798127832036941524620284804884136983215497742441302140070096928109039
c = 72201537621260682675988549650349973570539366370497258107694937619698999052787116039080427209958662949131892284799148484018421298241124372816425123784602508705232247879799611203283114123802597553853842227351228626180079209388772101105198454904371772564490263034162
R.<x> = PolynomialRing(Zmod(n))
f = (e//251)*x - 1
root = f.monic().small_roots(X = 2^256,beta=0.5)
print(root)

解出d为

d = 39217838246811431279243531729119914044224429322696785472959081158748864949269

又有
e d − 1 ≡ 0   m o d   p 4 ed-1 \equiv0 \space mod \space p^4 ed10 mod p4
进而可以求出 p = g c d ( e d − 1 , n ) 4 p= \sqrt[4]{gcd(ed-1,n)} p=4gcd(ed1,n)
由于 g c d ( e , p h i ) = 251 gcd(e,phi)=251 gcd(e,phi)=251
所以转为有限域下开根
flag经过pad之后长度为512bit,而p和q只有146bit,组合pqcrt是不够计算出flag的。
因此,我们将在模n的RSA转为在模 p 5 p^5 p5下的RSA
n = p 5 n = p^5 n=p5
p h i = p 4 ( p − 1 ) phi = p^4(p-1) phi=p4(p1)
m 251 = p o w ( c , d , p 5 ) m^{251} = pow(c,d,p^5) m251=pow(c,d,p5)
一开始想用常规有限域下开根去解方程

#sage
R.<x> = Zmod(p^5)[]
f = x^251-m
f = f.monic()
results1 = f.roots()

不知道啥情况,一直没有解

在这里插入图片描述
但是捏
山重水复疑无路,柳暗花明又一春
找到了一个新的用法
我们可以利用nth_root()求出在模 p 5 p^5 p5下的 m m m所有可能的根
再遍历所有的根,直到找到flag为止

解题代码

#sage 
from Crypto.Util.number import *
import gmpy2

n = 108960799213330048807537253155955524262938083957673388027650083719597357215238547761557943499634403020900601643719960988288543702833581456488410418793239589934165142850195998163833962875355916819854378922306890883033496525502067124670576471251882548376530637034077
e = 3359917755894163258174451768521610910491402727660720673898848239095553816126131162471035843306464197912997253011899806560624938869918893182751614520610693643690087988363775343761651198776860913310798127832036941524620284804884136983215497742441302140070096928109039
c = 72201537621260682675988549650349973570539366370497258107694937619698999052787116039080427209958662949131892284799148484018421298241124372816425123784602508705232247879799611203283114123802597553853842227351228626180079209388772101105198454904371772564490263034162

#get d  and p
R.<x> = PolynomialRing(Zmod(n))
f = (e//251)*x - 1
root = f.monic().small_roots(X = 2^256,beta=0.5)
d = int(root[0])
p_4 = GCD(e//251*d-1,n)
p = gmpy2.iroot(p_4,4)[0]

#find all possible roots to ergodic flag
phi = p^4*(p-1)
d1 = inverse_mod(e//251,phi)
m = pow(c,d,p^5)
result = Zmod(p^5)(m).nth_root(251,all=True)
for i in result:
    flag = long_to_bytes(int(i))
    if b'flag{' in flag:
        print(flag)
        break

flag:

flag{4b68c7eece6be865f6da2a4323edd491}

【等人是一件很开心的事情啊,如果等着人又能马上见着面就更幸福哩。】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值