目录
Redis如何判断某个key应该在哪个实例?
将16384个插槽分配到不同的实例 根据key的有效部分计算哈希值,对16384取余 余数作为插槽,寻找插槽所在实例即可
Redis插槽原理
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
-
key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
-
key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到7003节点,所以也会发现上述的链接信息自动跳转到了7003。
此时假设我们想把其余数据跟a存在一个节点,就可以执行类似下述操作,会发现不再做重定向:
到了7003后,执行get num
时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点【即:不止存储会做插槽计算和重定向,查询也会做】
redis故障转移 及手动故障转移的模式
Redis默认会进行自动故障转移
手动的Failover支持三种不同模式
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
这种failover命令可以指定三种模式:
-
缺省:默认的流程,如图1~6歩
-
force:省略了对offset的一致性校验
-
takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见
redis主从 哨兵 的原理
主从数据同步原理
全量同步
主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:
这里有一个问题,master如何得知salve是第一次来连接呢??有几个概念,可以作为判断依据:
-
Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
-
offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。如图:
完整流程描述:
-
slave节点请求增量同步
-
master节点判断replid,发现不一致,拒绝增量同步
-
master将完整内存数据生成RDB,发送RDB到slave
-
slave清空本地数据,加载master的RDB
-
master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
-
slave执行接收到的命令,保持与master之间的同步
增量同步
全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步。增量同步就是只更新slave与master存在差异的部分数据。如图:
哨兵原理
集群结构和作用
哨兵的结构如图:
哨兵的作用如下:
-
监控:Sentinel 会不断检查您的master和slave是否按预期工作
-
自动故障恢复:如果master故障Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
-
通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时会将最新信息推送给Redis的客户端
集群监控原理
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
集群故障恢复原理
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
-
首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
-
然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
-
如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
-
最后是判断slave节点的运行id大小,越小优先级越高。
当选出一个新的master后,该如何实现切换呢?
流程如下:
-
sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
-
sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
-
最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
小结
Sentinel的三个作用是什么?
-
监控
-
故障转移
-
通知
Sentinel如何判断一个redis实例是否健康?
-
每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
-
如果大多数sentinel都认为实例主观下线,则判定服务下线
故障转移步骤有哪些?
-
首先选定一个slave作为新的master,执行slaveof no one
-
然后让所有节点都执行slaveof 新master
-
修改故障节点配置,添加slaveof 新master
Redis分片集群结构
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
-
海量数据存储问题
-
高并发写的问题
使用分片集群可以解决上述问题,如图:
分片集群特征:
-
集群中有多个master,每个master保存不同数据
-
每个master都可以有多个slave节点
-
master之间通过ping监测彼此健康状态
-
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
如何将同一类数据固定的保存在同一个Redis实例?
这一类数据使用相同的有效部分,例如key都以{typeld}为前 缀