每日一题数学题
2021年
10月
9月
- 设函数
f
(
x
)
f(x)
f(x)在定义域为
(
−
l
,
l
)
(-l, l)
(−l,l),证明必存在
(
−
l
,
l
)
(-l, l)
(−l,l)上的偶函数
g
(
x
)
g(x)
g(x)及奇函数
h
(
x
)
h(x)
h(x)使得
f
(
x
)
=
g
(
x
)
+
h
(
x
)
f(x) = g(x) + h(x)
f(x)=g(x)+h(x).
证:
先假设这样 g ( x ) 和 h ( x ) g(x)和h(x) g(x)和h(x)存在,使得 f ( x ) = g ( x ) + h ( x ) f(x) = g(x) + h(x) f(x)=g(x)+h(x).
∵ f ( x ) = g ( x ) + h ( x ) , g ( x ) 是 偶 函 数 , h ( x ) 是 奇 函 数 \because f(x) = g(x) + h(x), g(x) 是偶函数, h(x) 是奇函数 ∵f(x)=g(x)+h(x),g(x)是偶函数,h(x)是奇函数
∴ f ( − x ) = g ( x ) − h ( x ) \therefore f(-x) = g(x) - h(x) ∴f(−x)=g(x)−h(x)
∴ f ( x ) + f ( − x ) = g ( x ) + h ( x ) + g ( x ) − h ( x ) \therefore f(x) + f(-x) = g(x) + h(x) + g(x) - h(x) ∴f(x)+f(−x)=g(x)+h(x)+g(x)−h(x)
∴ f ( x ) + f ( − x ) = 2 g ( x ) \therefore f(x) + f(-x) = 2g(x) ∴f(x)+f(−x)=2g(x)
∴ g ( x ) = f ( x ) + f ( − x ) 2 \therefore g(x) = \dfrac{f(x) + f(-x)}{2} ∴g(x)=2f(x)+f(−x)
∴ f ( x ) − f ( − x ) = g ( x ) + h ( x ) − g ( x ) + h ( x ) \therefore f(x) - f(-x) = g(x) + h(x) - g(x) + h(x) ∴f(x)−f(−x)=g(x)+h(x)−g(x)+h(x)
∴ h ( x ) = f ( x ) − f ( − x ) 2 \therefore h(x) = \dfrac{f(x) - f(-x)}{2} ∴h(x)=2f(x)−f(−x)
∴ g ( x ) + h ( x ) = f ( x ) + f ( − x ) 2 + f ( x ) − f ( − x ) 2 \therefore g(x) + h(x) = \dfrac{f(x) + f(-x)}{2} + \dfrac{f(x) - f(-x)}{2} ∴g(x)+h(x)=2f(x)+f(−x)+2f(x)−f(−x)
∴ g ( − x ) = f ( − x ) + f ( x ) 2 = g ( x ) \therefore g(-x) = \dfrac{f(-x) + f(x)}{2} =g(x) ∴g(−x)=2f(−x)+f(x)=g(x)
∴ h ( − x ) = f ( − x ) − f ( x ) 2 = − h ( x ) \therefore h(-x) = \dfrac{f(-x) - f(x)}{2} = -h(x) ∴h(−x)=2f(−x)−f(x)=−h(x)
证毕