每日一题数学题

本文展示了如何通过构造偶函数g(x)和奇函数h(x),使得在(-l,l)区间内的任意函数f(x)可以表示为它们的和。通过假设存在g(x)和h(x),并利用函数性质推导出g(x)和h(x)的表达式,证明了这种分解的存在性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每日一题数学题

2021年

10月

9月

  1. 设函数 f ( x ) f(x) f(x)在定义域为 ( − l , l ) (-l, l) (l,l),证明必存在 ( − l , l ) (-l, l) (l,l)上的偶函数 g ( x ) g(x) g(x)及奇函数 h ( x ) h(x) h(x)使得 f ( x ) = g ( x ) + h ( x ) f(x) = g(x) + h(x) f(x)=g(x)+h(x).
    证:
    先假设这样 g ( x ) 和 h ( x ) g(x)和h(x) g(x)h(x)存在,使得 f ( x ) = g ( x ) + h ( x ) f(x) = g(x) + h(x) f(x)=g(x)+h(x).
    ∵ f ( x ) = g ( x ) + h ( x ) , g ( x ) 是 偶 函 数 , h ( x ) 是 奇 函 数 \because f(x) = g(x) + h(x), g(x) 是偶函数, h(x) 是奇函数 f(x)=g(x)+h(x),g(x)h(x)
    ∴ f ( − x ) = g ( x ) − h ( x ) \therefore f(-x) = g(x) - h(x) f(x)=g(x)h(x)
    ∴ f ( x ) + f ( − x ) = g ( x ) + h ( x ) + g ( x ) − h ( x ) \therefore f(x) + f(-x) = g(x) + h(x) + g(x) - h(x) f(x)+f(x)=g(x)+h(x)+g(x)h(x)
    ∴ f ( x ) + f ( − x ) = 2 g ( x ) \therefore f(x) + f(-x) = 2g(x) f(x)+f(x)=2g(x)
    ∴ g ( x ) = f ( x ) + f ( − x ) 2 \therefore g(x) = \dfrac{f(x) + f(-x)}{2} g(x)=2f(x)+f(x)
    ∴ f ( x ) − f ( − x ) = g ( x ) + h ( x ) − g ( x ) + h ( x ) \therefore f(x) - f(-x) = g(x) + h(x) - g(x) + h(x) f(x)f(x)=g(x)+h(x)g(x)+h(x)
    ∴ h ( x ) = f ( x ) − f ( − x ) 2 \therefore h(x) = \dfrac{f(x) - f(-x)}{2} h(x)=2f(x)f(x)
    ∴ g ( x ) + h ( x ) = f ( x ) + f ( − x ) 2 + f ( x ) − f ( − x ) 2 \therefore g(x) + h(x) = \dfrac{f(x) + f(-x)}{2} + \dfrac{f(x) - f(-x)}{2} g(x)+h(x)=2f(x)+f(x)+2f(x)f(x)
    ∴ g ( − x ) = f ( − x ) + f ( x ) 2 = g ( x ) \therefore g(-x) = \dfrac{f(-x) + f(x)}{2} =g(x) g(x)=2f(x)+f(x)=g(x)
    ∴ h ( − x ) = f ( − x ) − f ( x ) 2 = − h ( x ) \therefore h(-x) = \dfrac{f(-x) - f(x)}{2} = -h(x) h(x)=2f(x)f(x)=h(x)
    证毕
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值