A/B测试-指标的统计属性

该内容来自于极客时间A/B测试从0到1课程

A/B测试-指标的统计属性

1.指标类型

在实际业务中,常用的指标有两类

  • 均值类:用户的平均使用时长,平均购买金额,平均购买频率
  • 概率类:点击率,转化率,购买率

这些指标是用来表征用户行为的,而用户行为是随机的,因此这些指标是由一系列随机事件组成的变量

概率分布来表征随机变量取不同值的概率和范围。

在数量足够大时,均值类指标服从正态分布;概率类指标本质上服从二项分布,但当数量足够大时,也服从正态分布

2.描述业务数据

均值类指标-正态分布意义

描述业务指标的离散程度:方差,标准差

业务指标的波动范围:z分数

	z=(x-u)/sigma

	表示含义:x偏离平均值u多少个标准差

概率类指标-二项分布意义

适用于用户只有两种结果:点击或不点击,发生或不发生

看用户平均概率,例如:平均用户点击率

处理方法:(以计算app投放广告后的下载率为例子)

已有数据:一个月的用户及下载数据

下载率=通过广告下载app的用户数量/看到广告的用户数量

分析下载率,需要

1.计算每分钟的下载率

2.观察概率分布

即可以得到43200(60 * 30 * 24)个数据点,通过数据分析可得平均每分钟有10人会看到广告,下载率集中分布在0-30%之间

下载率分布是否趋近于正态分布

当计算概率的样本量足够大(大于30)时,下载率能服从正态分布

样本量10(平均每分钟有10人看到广告)没有达到阈值,分布不服从正态分布

在这里插入图片描述

不服从正态分布

提高曝光度,平均每分钟有600人看到广告

在这里插入图片描述

服从正态分布

  • 经验

当概率指标满足min(np,n(1-p))>5时,二项分布服从正态分布

即,样本量和概率(下载概率/没下载概率)的乘积至少大于5

3.理解假设检验

假设检验:检验通过样本数据产生的假设在总体数据(即)事实上是否成立

案例:用A/B测试来验证推荐系统改进后的效果

指标:点击率

测试结果是显示:实验组(新算法)比对照组(旧算法)的点击率高

但是A/B测试出提出的假设为

原假设:实验组和对照组的点击率相同

备择假设:实验组和对照组的点击率不同

A/B测试中,更推荐双尾检验

原因:

1.双尾检验可以让数据自身在决策中发挥更大的作用

2.双尾检验可以帮助我们全面考虑变化带来的正,负面效果(即效果可能与原来设想的相反,则双尾更合理)

A/B测试中,使用双样本检验

  • 当不知道总体方差时,使用T检验
  • 当已知总体方差时,且样本量大于30时,使用Z检验

一般,均值类用T检验,概率类用Z检验

拒真与取伪两种错误

拒真:也称阿尔法错误,统计定义为拒绝了事实上是正确的原假设。

取伪:也称贝塔错误,统计定义为接受了事实上是错误的原假设。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值