该内容来自于极客时间A/B测试从0到1课程
A/B测试-指标的统计属性
1.指标类型
在实际业务中,常用的指标有两类
- 均值类:用户的平均使用时长,平均购买金额,平均购买频率
- 概率类:点击率,转化率,购买率
这些指标是用来表征用户行为的,而用户行为是随机的,因此这些指标是由一系列随机事件组成的变量
用概率分布来表征随机变量取不同值的概率和范围。
在数量足够大时,均值类指标服从正态分布;概率类指标本质上服从二项分布,但当数量足够大时,也服从正态分布
2.描述业务数据
均值类指标-正态分布意义
描述业务指标的离散程度:方差,标准差
业务指标的波动范围:z分数
z=(x-u)/sigma
表示含义:x偏离平均值u多少个标准差
概率类指标-二项分布意义
适用于用户只有两种结果:点击或不点击,发生或不发生
看用户平均概率,例如:平均用户点击率
处理方法:(以计算app投放广告后的下载率为例子)
已有数据:一个月的用户及下载数据
下载率=通过广告下载app的用户数量/看到广告的用户数量
分析下载率,需要
1.计算每分钟的下载率
2.观察概率分布
即可以得到43200(60 * 30 * 24)个数据点,通过数据分析可得平均每分钟有10人会看到广告,下载率集中分布在0-30%之间
下载率分布是否趋近于正态分布
当计算概率的样本量足够大(大于30)时,下载率能服从正态分布
样本量10(平均每分钟有10人看到广告)没有达到阈值,分布不服从正态分布
不服从正态分布
提高曝光度,平均每分钟有600人看到广告
服从正态分布
- 经验
当概率指标满足min(np,n(1-p))>5时,二项分布服从正态分布
即,样本量和概率(下载概率/没下载概率)的乘积至少大于5
3.理解假设检验
假设检验:检验通过样本数据产生的假设在总体数据(即)事实上是否成立
案例:用A/B测试来验证推荐系统改进后的效果
指标:点击率
测试结果是显示:实验组(新算法)比对照组(旧算法)的点击率高
但是A/B测试出提出的假设为
原假设:实验组和对照组的点击率相同
备择假设:实验组和对照组的点击率不同
A/B测试中,更推荐双尾检验
原因:
1.双尾检验可以让数据自身在决策中发挥更大的作用
2.双尾检验可以帮助我们全面考虑变化带来的正,负面效果(即效果可能与原来设想的相反,则双尾更合理)
A/B测试中,使用双样本检验
- 当不知道总体方差时,使用T检验
- 当已知总体方差时,且样本量大于30时,使用Z检验
一般,均值类用T检验,概率类用Z检验
拒真与取伪两种错误
拒真:也称阿尔法错误,统计定义为拒绝了事实上是正确的原假设。
取伪:也称贝塔错误,统计定义为接受了事实上是错误的原假设。