python Matplotlib绘图常见操作!

这篇博客详细介绍了如何使用Python的Matplotlib库进行各种图形的绘制,包括折线图、柱状图、散点图、直方图和盒子图。通过实例展示了创建子图、指定颜色、完善轴标签等操作,并探讨了直方图与柱状图的区别。
摘要由CSDN通过智能技术生成
import pandas as pd 
unrate=pd.read_csv("C:/Total-folder/work/AI/machine/data/UNRATE.csv")
###把现有列的时间进行类型转换转成标准的时间格式
unrate["DATE"]=pd.to_datetime(unrate["DATE"])
print(unrate.head(12))





返回值:
DATE VALUE
0 1948-01-01 3.4
1 1948-02-01 3.8
2 1948-03-01 4.0
3 1948-04-01 3.9
4 1948-05-01 3.5
5 1948-06-01 3.6
6 1948-07-01 3.6
7 1948-08-01 3.9
8 1948-09-01 3.8
9 1948-10-01 3.7
10 1948-11-01 3.8
11 1948-12-01 4.0

绘制一个空的画板

import matplotlib.pyplot as plt
#绘制图形的过程
###plot---绘制的内容
plt.plot()
plt.show()

在这里插入图片描述

折现图

first_twelve=unrate[0:12]
##绘制出折线图x---日期 y--失业率
plt.plot(first_twelve["DATE"],first_twelve["VALUE"])
##指定角度可以进行文字的旋转内容特别多可以斜着写
plt.xticks(rotation=45)
# 执行横轴x标签 Y周标签 以及整个图形的标题
plt.xlabel("Month")
plt.ylabel("Unemployment RATE")
plt.title("Monthly Unemployment RATE 1948")
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

子图的操作 创建一个画板 窗口

# 子图的操作 创建一个画板 窗口
fig=plt.figure()
# 绘制矩阵的大小 以及在不同的为主绘制子图
# 创建一个两行两列的矩阵
# ax1所在第一个位置,ax2所在第二个位置,ax3所在第三个位置,ax14所在第四个位置
ax1=fig.add_subplot(2,2,1)
ax2=fig.add_subplot(2,2,2)
ax3=fig.add_subplot(2,2,3)


plt.show()

在这里插入图片描述

# 子图的操作
# figsize指定绘制区域所宽高各分多少份  例如(4,4)即长4英寸  宽4英寸的大小创建一个窗口
fig=plt.figure(figsize=(4,4))
# 绘制矩阵的大小 以及在不同为主的绘制图 以及每个子图在途中的大小
# 所占比例大小及位置
ax1=fig.add_subplot(2,1,1)
ax2=fig.add_subplot(2,1,2)
# 可以在不同的子图中再绘制自己想要的内容np.random.randint(1,1,5) 随机1-5直接选择5个数字
ax1.plot(np.random.randint(1,5,5),np.arange(5))
print("np.arange(10)*3",np.arange(10)*3)

print("np.arange(10)",np.arange(10))
print("数据类型",type(np.arange(10)))#ndarray
ax2.plot(np.arange(10)*8,np.arange(10))

plt.show()

可以在一个图形中绘制多个折现 指定颜色值

# 可以在一个图形中绘制多个折现 指定颜色值
unrate["MONTH"]=unrate["DATE"].dt.month

# print("unrate.head(5)",unrate.head(5))
# print("数据类型",type(unrate.head(5)))#DataFrame
fig=plt.figure(figsize=(6,3))
plt.plot(unrate[0:12]["MONTH"],unrate[0:12]["VALUE"],c="red")
plt.plot(unrate[12:24]["MONTH"],unrate[12:24]["VALUE"],c="black")
plt.show()

在这里插入图片描述

# 可以在一个图形中绘制多个折现 指定颜色值
# 创建多条折现
colors=["red","blue","green","black"]
# 遍历颜色列表长度
for i in range(len(colors)):
    start_index=i*12
    print("start_index",start_index)
    end_index=(1+i)*12
    print("end_index",end_index)
    subset=unrate[start_index:end_index]
    print("subset",subset)
    print("数据类型",type(subset))#DataFrame
    plt.plot(subset["MONTH"],subset["VALUE"],c=colors[i])
      
plt.show()

在这里插入图片描述

# 可以在一个图形中绘制多个折现 指定颜色值
# 创建多条折现
colors=["red","blue","green","black"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值