C++实验7-最大公约和和最小公倍数

这篇博客介绍了使用C++编程实现最大公约数(GCD)和最小公倍数(LCM)的方法,重点在于应用辗转相除法。作者通过实践认识到函数理解的重要性,并总结了求解GCD的步骤:不断用较小数除以较大数的余数,直至余数为0,最后的除数即为最大公约数。
摘要由CSDN通过智能技术生成

一、问题及代码:

/*  
* 文件名称:Ex7.cpp 
* 作    者:罗前   
* 完成日期:2016 年 6月 2日  
* 版 本 号:v6.0  
* 对任务及求解方法的描述部分:
* 输入描述:从键盘中输入两个整数
* 问题描述:
* 程序输出:求这两个整数的最大公约数和最小公倍数
* 问题分析:  
* 算法设计:   
*/    
#include <iostream>  
using namespace std;  
int g;       //定义全局变量
void Fun_1(int m,int n) 
{
	int t;
	if(m<n)
	{
		Fun_1(n,m);
	}
	else
	{
		while(n!=0)
		{
			t=m%n;
			m=n;
			n=t;
		}
		g=m;
	}
}
int Fun_2(int m,int n)
{
	int t;
	t=(m*n)/g;
	return t;
}
int main(int argc,char *argv[])
{
	int m,n;
	cout<<"请输入两个数据:";
	cin>>m>>n;
	Fun_1(m,n);
	cout<<m<<"与"<<n<<"的最大公约数是:";
	cout<<g<<endl;
	cout<<m<<"与"<<n<<"的最小公倍数是:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值