题目描述
某个班级学生去旅行,student[i]表示第i-1名学生旅行所花费的时间。例如student[0]=2表示第1名学生旅行一次需要花费2单位的时间。每名学生可以旅行多次,即旅行结束后可立即再次旅行。
现给定一组数据表示学生的一次旅行所花费的时间std[m]
和指定旅行的总次数n
需要计算出完成n次旅游所花的最小时间。
例子:
输入
1 2 3 4
5
输出
4
解析:四名同学在单位时间0时同时出发,第四名同学须在单位时间为4时才能完成旅行。
第一名同学在4个单位时间内可完成4次旅行。
4 + 2 + 1 + 1 = 8 > 5
思路解析
抓住两个要点:
1.每名学生从单位时间0开始出发,必须保证每名学生都至少完成一次旅行。
2.旅行总次数不少于给定的次数。
这个有点像动态规划的意思
每次增加一个时间单位,看这些同学完成了几个轮次的旅游。
在保证上面两个条件都满足时,此时所消耗的时长就是最小时间。
和最短路径算法有相同的地方。
编程实现
#include <iostream.h>
#include <string>
#include <vector>
using namespace std;
int main()
{
vector<int> studs;
int tempi,tarCount;
while(1)
{
cin >> tempi;
studs.push_back(tempi);
if(getchar() == '\n') break;
}
cin >> tarCount;
//sort(studs.begin(),studs.end());
int leng