自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

在科技的浪潮中,我们寻找着创新的火种,在代码的海洋里,我们编织着智慧的网。腾飞开源,就是这样一个由技术精英汇聚而成的博客平台,我们致力于分享在Java、Python、IoT和人工智能等领域的最新研究成果和实战经验。 在腾飞开源的博客上,你会看到紧跟技术前

腾飞开源博客,是一个集结了众多技术精英的分享与交流平台。在这里,我们深入探讨Java、Python、IoT及人工智能等领域的最新技术趋势和实践经验,致力于将前沿科技动态和创新思维传递给每一位对技术充满热情的读者。 博客内容覆盖技术解析、案例分析、项目实战

  • 博客(434)
  • 资源 (5)
  • 收藏
  • 关注

原创 61_Spring AI 干货笔记之对话记忆

本文介绍了Spring AI中的对话记忆(ChatMemory)机制,用于解决大型语言模型(LLM)无状态、无法保留跨对话上下文的问题。文章阐明了对话记忆(相关上下文)与完整对话历史的区别,并详细阐述了其核心架构:通过ChatMemoryRepository抽象(支持内存、JDBC、Cassandra等多种后端)存储消息,并由ChatMemory实现(如MessageWindowChatMemory)决定保留策略。此外,文章说明了如何通过内置的Advisor(如MessageChatMemoryAdviso

2026-01-02 22:23:40 769

原创 60_Spring AI 干货笔记之 Mistral AI 内容审核模型

本文介绍了在Spring AI框架中集成Mistral AI内容审核模型的方法,用于根据法律、财务、PII等多个策略维度检测文本中的有害内容。文章详细说明了注册账户并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀(spring.ai.mistralai.moderation)设置连接与模型参数。核心内容包括通过MistralAiModerationOptions在运行时动态选择审核模型,并通过代码示例展示了如何解析包括Law、Financial、PII等特有类别在内的审核结果与

2026-01-02 15:09:00 674

原创 59_Spring AI 干货笔记之 OpenAI 内容审核模型

本文介绍了在Spring AI项目中集成OpenAI内容审核模型的方法,用于检测文本中的有害或敏感内容。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀(spring.ai.openai.moderation)设置连接与模型参数。核心内容包括通过OpenAiModerationOptions在运行时动态选择审核模型,并通过代码示例展示了如何解析审核结果(包括违规类别与置信度分数)。同时,文章提供了手动配置客户端的代码,指导开发者实现内容安全过滤功能。

2026-01-01 11:54:17 919

原创 58_Spring AI 干货笔记之 ElevenLabs 文本转语音 (TTS)

ElevenLabs 文本转语音 (TTS) 摘要: 本文介绍了如何在 Spring AI 项目中集成 ElevenLabs 的高质量、多语言文本转语音 (TTS) 模型。文章详细说明了获取 API 密钥、通过 starter 依赖启用自动配置,以及利用属性前缀进行全局和 TTS 专用参数配置的步骤。核心特性包括通过 ElevenLabsTextToSpeechOptions 在运行时灵活设置语音、模型、输出格式及丰富的语音参数(如稳定性、相似度),并支持通过 Voices API 发现可用声音及实时音频流

2026-01-01 11:12:46 1118

原创 57_Spring AI 干货笔记之 OpenAI 文本转语音 (TTS)

本文详细介绍了在Spring AI中将OpenAI文本转语音(TTS)功能从已弃用的专有接口迁移到新的统一、可移植接口(TextToSpeechModel)的完整指南。文章重点阐述了此次迁移的重大变更,包括核心类与包的重新组织、speed参数类型从Float改为Double,以及接口层级的优化。通过提供详尽的类映射表、分步迁移说明和丰富的代码对比示例,指导开发者顺利更新导入、调整类型引用并重构应用代码,最终实现代码的提供商无关性和未来兼容性。

2025-12-31 19:35:09 1017

原创 56_Spring AI 干货笔记之文本转语音 (TTS) API

本文介绍了Spring AI中的文本转语音(TTS)统一API,该API通过TextToSpeechModel和StreamingTextToSpeechModel接口支持OpenAI和Eleven Labs等提供商,实现了代码的可移植性。文章详细阐述了核心接口设计,并通过依赖注入和属性配置实现了在不修改应用代码的情况下切换提供商。重点提供了丰富的代码示例,包括基础服务、多提供商支持、流式音频处理、REST控制器构建以及最佳实践,指导开发者灵活集成TTS功能。

2025-12-31 14:06:01 889

原创 55_Spring AI 干货笔记之 OpenAI 语音转录

本文介绍了在Spring AI项目中集成OpenAI语音转录模型的方法。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀(如spring.ai.openai.audio.transcription)设置连接与模型参数。核心特性包括通过OpenAiAudioTranscriptionOptions在运行时动态覆盖转录语言、提示词、响应格式等选项的灵活性。同时,文章提供了手动配置客户端和进行转录调用的完整代码示例,为开发者实现音频转文字功能提供了清晰的指南。

2025-12-28 21:18:15 832

原创 54_Spring AI 干货笔记之 Azure OpenAI 语音转录

本文介绍了如何在Spring AI项目中集成Azure OpenAI的Whisper语音转录模型。文章首先说明需要从Azure门户获取API密钥和端点,并通过starter依赖启用自动配置。核心内容阐述了通过属性前缀 spring.ai.openai.audio.transcription 进行参数配置,并重点说明了利用 AzureOpenAiAudioTranscriptionOptions 在运行时动态覆盖转录语言、提示词、响应格式等选项的灵活性。同时,文章提供了手动配置客户端和进行转录调用的完整代码示

2025-12-28 20:53:40 830

原创 53_Spring AI 干货笔记之转录API

本文介绍了Spring AI中统一的转录API,该API通过TranscriptionModel接口为语音转文字功能提供了可移植的编程模型。该设计支持OpenAI Whisper和Azure OpenAI Whisper两种主要提供商,开发者可以通过通用的AudioTranscriptionPrompt和AudioTranscriptionResponse进行交互,无需修改核心业务代码即可在不同服务间切换。文章强调该接口实现了提供商无关性,并允许通过依赖注入灵活配置,同时各提供商可通过特定选项类提供额外功能

2025-12-25 22:51:59 485

原创 52_Spring AI 干货笔记之 ZhiPuAI 图像生成

本文介绍了在Spring AI项目中集成智谱AI CogView图像生成模型的方法。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀(spring.ai.zhipuai.image)设置连接、重试和模型参数。核心特性包括通过ZhiPuAiImageOptions在运行时动态覆盖图像质量(如HD)、生成数量和尺寸等高级设置,为开发者提供了灵活且完整的图像生成功能集成指南。

2025-12-25 22:10:07 661

原创 51_Spring AI 干货笔记之 Stability AI 图像生成

本文介绍了在Spring AI项目中集成Stability AI文生图模型的方法。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀(spring.ai.stabilityai.image)设置连接与模型参数。核心特性包括通过StabilityAiImageOptions在运行时动态覆盖图片风格(如cinematic)、生成数量和尺寸等高级设置,为开发者提供了灵活且完整的图像生成功能集成指南。

2025-12-23 21:17:19 1041 2

原创 50_Spring AI 干货笔记之 OpenAI 图像生成

本文介绍了如何在Spring AI项目中集成OpenAI的DALL-E图像生成模型。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀设置连接、重试和模型参数。核心特性包括通过OpenAiImageOptions在运行时动态覆盖图像质量(如HD)、生成数量和尺寸等高级设置,为开发者提供了灵活且完整的图像生成功能集成指南。

2025-12-23 20:47:42 930

原创 49_Spring AI 干货笔记之 OpenAI SDK 图像生成(官方)

本文介绍了Spring AI如何通过官方的OpenAI Java SDK集成DALL-E图像生成模型。该实现支持原生OpenAI、Microsoft Foundry及GitHub Models三种服务,并能根据基础URL自动识别提供商。文章详细说明了API密钥或无密码认证等配置方式,阐述了通过starter依赖启用自动配置、利用属性前缀设置模型参数的步骤,并重点说明了通过OpenAiSdkImageOptions在运行时动态调整图像质量、尺寸等参数的灵活性。同时,提供了创建REST控制器以及手动配置客户端的

2025-12-20 16:02:23 1755 1

原创 48_Spring AI 干货笔记之 Azure OpenAI 图像生成

本文介绍了在Spring AI项目中集成Azure OpenAI的DALL-E图像生成模型的方法。文章详细说明了获取Azure API密钥与终端节点的步骤,并解释了部署名称(如MyImgAiDeployment)与模型名称(如Dalle3)的区别及配置方式。核心内容包括通过添加starter依赖启用自动配置、使用属性前缀设置连接与模型参数,并重点阐述了通过OpenAiImageOptions在运行时动态覆盖图片质量、尺寸和数量等生成选项的灵活性。

2025-12-20 11:38:23 1116

原创 47_Spring AI 干货笔记之图像模型 API

本文介绍了Spring AI图像模型API,该API旨在为图像生成提供一个统一且可移植的接口,使开发人员能够以最少代码在不同AI模型(如OpenAI、StabilityAI)之间灵活切换。文章详细阐述了核心接口ImageModel及其相关类,包括用于封装输入的ImagePrompt和ImageMessage、用于配置的ImageOptions,以及处理输出的ImageResponse和ImageGeneration。该设计通过抽象层简化了与各类图像生成模型的交互,并支持在启动时配置选项,在运行时进行覆盖。

2025-12-17 07:54:23 917

原创 46_Spring AI 干货笔记之 ZhiPuAI 嵌入模型

本文介绍了在Spring AI项目中集成智谱AI文本嵌入模型的方法。该模型通过计算向量距离来衡量文本语义相关性。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀配置连接、重试和模型参数。核心内容包括通过ZhiPuAiEmbeddingOptions在运行时动态覆盖默认设置的灵活性,同时提供了创建REST控制器以及进行手动配置客户端的完整代码示例,为开发者集成该模型提供了清晰的指南。

2025-12-17 07:53:24 862

原创 45_Spring AI 干货笔记之 Google VertexAI 多模态嵌入模型

本文介绍了在Spring AI框架中集成Google Vertex AI多模态嵌入模型(实验性功能)。该模型能根据图像、文本或视频输入生成统一的1408维向量,实现跨模态的语义搜索(如以文搜图)。文章阐述了通过gcloud CLI进行身份验证、添加starter依赖启用自动配置,并利用属性前缀进行连接与模型设置的步骤。由于该功能尚不兼容VectorStores,文中重点提供了手动配置VertexAiMultimodalEmbeddingModel的代码示例,指导开发者生成多模态嵌入向量。

2025-12-16 10:01:22 791 2

原创 44_Spring AI 干货笔记之 Google VertexAI 文本嵌入模型

本文介绍了在Spring AI项目中集成Google Vertex AI文本嵌入模型的方法。Vertex AI使用稠密向量表示文本语义,以提升相似性搜索的准确性。文章详细说明了通过gcloud CLI进行身份验证的先决条件,并通过添加starter依赖启用自动配置,利用属性前缀设置连接与模型参数。核心内容包括创建示例控制器生成嵌入响应,以及进行手动配置的步骤,如添加依赖和从服务账户加载凭据,为开发者提供了完整的集成指南。

2025-12-16 09:37:38 892

原创 43_Spring AI 干货笔记之 PostgresML 嵌入模型

本文介绍了在Spring AI框架中集成PostgresML文本嵌入模型的方法。该模型利用数据库内置能力,可直接调用Hugging Face的预训练模型(如DistilBERT)将文本转换为向量,用于语义分析和机器学习。文章详细说明了通过添加starter依赖启用自动配置、使用属性前缀设置模型参数的步骤,并重点阐述了通过PostgresMlEmbeddingOptions在运行时动态选择模型及设备(如CPU/GPU)的灵活性。同时,提供了创建REST控制器以及手动配置(需初始化JDBC模板)的完整代码示例。

2025-12-15 23:27:28 901 4

原创 42_Spring AI 干货笔记之 OpenAI 嵌入

本文介绍了在Spring AI项目中集成OpenAI文本嵌入模型的方法,该模型通过向量距离衡量文本相关性。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀(如spring.ai.openai.embedding)配置连接、重试和模型参数。核心特性包括通过OpenAiEmbeddingOptions在运行时动态覆盖默认设置的灵活性,同时提供了创建REST控制器以及进行手动配置客户端的完整代码示例,为开发者集成该模型提供了清晰的指南。

2025-12-15 12:23:02 1062 2

原创 41_Spring AI 干货笔记之 OpenAI SDK 嵌入(官方支持)

本文介绍了Spring AI通过官方OpenAI Java SDK集成文本嵌入模型的方法。该实现支持原生OpenAI、Microsoft Foundry及GitHub Models三种服务,并可根据配置的基础URL自动识别提供商。文章详细阐述了针对不同服务的API密钥或无密码认证配置方式。核心内容包括通过starter依赖启用自动配置、使用属性前缀设置连接与模型参数,并重点说明了通过OpenAiSdkEmbeddingOptions在运行时动态覆盖默认选项的灵活性。同时提供了创建REST控制器以及进行手动配

2025-12-14 21:15:44 1358 3

原创 40_Spring AI 干货笔记之 Transformers (ONNX) 嵌入

本文介绍了在Spring AI框架中使用ONNX格式Transformer模型在本地计算文本嵌入的方法。该实现通过TransformersEmbeddingModel集成HuggingFace的预训练句子转换器模型,利用Deep Java Library和ONNX Java运行时执行推理。文章详细说明了将模型序列化为ONNX格式的前提条件、通过starter依赖启用自动配置的步骤,以及通过属性前缀进行模型和分词器配置。同时,文章列举了常见错误及解决方法,并提供了手动配置的代码示例,为开发者提供了完全本地的嵌

2025-12-14 15:18:30 1170

原创 39_Spring AI 干货笔记之 Ollama 嵌入

本文介绍了在Spring AI框架中集成Ollama以在本地运行AI模型并生成文本嵌入的方法。Ollama支持多种模型并可直接拉取HuggingFace的GGUF格式模型。文章详细说明了通过starter依赖启用自动配置、使用属性前缀(spring.ai.ollama)设置连接与模型参数的步骤,并重点阐述了在运行时通过OllamaEmbeddingOptions动态调整配置的灵活性。核心特性包括自动拉取模型的策略、支持本地部署以及与HuggingFace生态的集成,为开发者提供了便捷的本地嵌入生成方案。

2025-12-13 19:52:47 1057 2

原创 38_Spring AI 干货笔记之 OCI GenAI 嵌入

本文介绍了在Spring AI框架中集成Oracle云基础设施(OCI)GenAI文本嵌入模型的方法。文章概述了OCI GenAI服务提供按需或专用集群的嵌入功能,并详细说明了通过添加starter依赖启用自动配置、使用属性前缀配置连接与模型参数的步骤。核心特性包括利用OCIEmbeddingOptions在运行时动态覆盖默认模型等设置,提供了创建REST控制器的示例,以及进行手动配置和调用底层客户端的代码,指导开发者实现文本向量化功能。

2025-12-13 14:28:24 760

原创 37_Spring AI 干货笔记之 MiniMax 嵌入

本文介绍了如何在Spring AI项目中集成MiniMax的文本嵌入模型。内容涵盖注册账号获取API密钥、通过starter依赖启用自动配置、以及利用属性前缀(如spring.ai.minimax.embedding)配置连接、重试和模型参数。文章重点说明了通过MiniMaxEmbeddingOptions在运行时动态覆盖默认设置的灵活性,并提供了创建REST控制器以及进行手动配置的完整代码示例,为开发者集成该模型提供了清晰的指南。

2025-12-12 11:09:41 833

原创 36_Spring AI 干货笔记之 Mistral AI 嵌入

本文介绍了如何在Spring AI项目中集成Mistral AI的文本嵌入模型。Mistral AI提供了mistral-embed(通用文本)和codestral-embed(代码相关)两种向量模型,用于捕获文本的语义含义。文章详细说明了获取并配置API密钥的步骤,通过添加starter依赖启用自动配置,并利用属性前缀spring.ai.mistralai.embedding设置模型参数。核心特性包括通过MistralAiEmbeddingOptions在运行时动态选择不同模型,并提供了创建REST控制器

2025-12-12 10:04:10 1030

原创 35_Spring AI 干货笔记之 Google GenAI 文本嵌入

本文介绍了如何在Spring AI框架中集成Google GenAI文本嵌入模型,该模型使用密集向量表示文本语义。文章详细说明了两种认证模式:使用API密钥的Gemini开发者API(适合原型开发)和使用Google Cloud凭据的Vertex AI(适合生产环境)。核心内容包括通过starter依赖启用自动配置、设置连接与模型参数,并提供了创建REST控制器的示例代码。此外,文章还阐述了为不同用例优化的多种任务类型、支持维度缩减以优化存储,以及从Vertex AI迁移至此新实现的指南。

2025-12-12 09:03:20 956

原创 34_Spring AI 干货笔记之 Azure OpenAI 嵌入

本文介绍了在Spring AI框架中集成Azure OpenAI嵌入模型的完整方法。Azure OpenAI提供文本相似性、搜索及代码搜索等多种嵌入类型,基于余弦相似度计算语义关联。文章详细说明了三种身份验证方式:Azure API密钥、OpenAI密钥及Microsoft Entra ID无密钥认证。核心内容包括通过starter依赖启用自动配置、设置连接与模型参数,并利用AzureOpenAiEmbeddingOptions在运行时动态覆盖默认选项。同时,提供了创建REST控制器以及进行手动配置客户端的

2025-12-11 08:01:10 941

原创 33_Spring AI 干货笔记之 Titan 嵌入模型

本文介绍了如何在Spring AI项目中集成Amazon Bedrock托管的Titan嵌入模型。该模型支持文本和图像两种嵌入方式,但不支持批量嵌入。文章详细说明了通过添加starter依赖、设置spring.ai.model.embedding=bedrock-titan启用模型、配置AWS连接与模型参数的步骤,并阐述了利用BedrockTitanEmbeddingOptions在运行时动态调整配置的灵活性。同时,提供了创建示例控制器、进行手动配置以及调用底层API(包括图像base64编码嵌入)的完整代

2025-12-11 08:00:00 885

原创 32_Spring AI 干货笔记之 Cohere 嵌入模型

本文介绍了如何在Spring AI项目中集成并使用Amazon Bedrock托管的Cohere嵌入模型。文章详细说明了启用模型(通过设置 spring.ai.model.embedding=bedrock-cohere)、配置AWS连接与模型参数的步骤,并重点阐述了通过BedrockCohereEmbeddingOptions在运行时动态覆盖默认选项的灵活性。此外,还提供了创建示例控制器实现文本向量化,以及进行手动配置和调用底层API客户端的完整代码示例。

2025-12-10 00:12:48 931 2

原创 31_Spring AI 干货笔记之嵌入模型 Amazon Bedrock

本文介绍了如何在Spring AI项目中集成Amazon Bedrock服务,以使用其托管的多个AI提供商模型。文章重点说明了通过统一的Converse API实现聊天对话功能,并详细阐述了开始使用的步骤,包括添加starter依赖、配置AWS凭证与区域、以及显式启用所需模型(如Cohere、Titan嵌入模型)。Spring AI提供了自动配置和Boot Starter,简化了Bedrock模型的引导和配置流程。

2025-12-10 00:07:14 974

原创 30_Spring AI 干货笔记之嵌入模型 API

本文介绍了Spring AI框架中的通用嵌入模型API,该接口旨在将文本等数据转换为数值向量(嵌入)。文章重点阐述了EmbeddingModel接口的设计,强调其可移植性(便于在不同嵌入技术间切换)和简单性(提供直观的文本转向量方法)。同时,文章概述了用于封装请求与响应的核心类(EmbeddingRequest, EmbeddingResponse, Embedding),并列举了基于该API的多种实现,如OpenAI、Azure OpenAI、Ollama等,为集成语义分析功能提供了统一且灵活的编程模型。

2025-12-10 00:05:44 954

原创 29_Spring AI 干货笔记之智谱AI聊天

本文介绍了在Spring AI框架中集成智谱AI(Zhipu AI)聊天模型的方法。内容包括注册账户并配置API密钥、通过添加starter依赖启用自动配置、设置连接与模型参数等核心步骤。文章详细说明了如何通过属性前缀配置各项参数,并利用运行时选项(ZhiPuAiChatOptions)动态覆盖默认设置。最后提供了创建示例控制器进行文本生成以及手动配置客户端的完整代码示例,帮助开发者快速实现基于智谱AI模型的对话功能。

2025-12-09 13:22:32 841

原创 28_Spring AI 干货笔记之 OpenAI 聊天功能

本文详细介绍了在Spring AI框架中集成OpenAI聊天模型的方法。内容涵盖API密钥配置、通过starter依赖启用自动配置、连接与模型参数的详细设置,并重点说明了运行时选项的动态覆盖机制。文章还深入讲解了多模态处理(图像与音频)、结构化输出、函数调用等高级功能,提供了示例控制器和手动配置指南,并讨论了与OpenAI兼容服务器的适配与推理模型思维链的获取。

2025-12-09 11:10:05 1128

原创 27_Spring AI 干货笔记之 OpenAI SDK 聊天功能(官方支持)

本文详细介绍了如何在Spring AI项目中通过OpenAI SDK集成OpenAI、Microsoft Foundry和GitHub Models的聊天模型服务。文章阐述了认证配置、自动配置依赖、连接与模型属性设置等核心步骤,并说明了如何通过运行时选项动态调整参数。此外,还涵盖了工具调用、多模态(视觉与音频)处理以及结构化输出等高级功能,为开发者提供了完整的集成指南。

2025-12-08 20:10:08 1221 5

原创 26_Spring AI 干货笔记之 OCI GenAI Cohere 聊天

本文介绍了如何在Spring AI应用中集成和使用OCI GenAI Cohere聊天模型。主要内容包括使用前提(需OCI账户)、通过添加依赖启用自动配置、连接与模型属性的设置方法,以及如何通过运行时选项动态调整参数。文章还提供了示例控制器代码和手动配置的具体步骤,帮助开发者快速实现基于OCI GenAI的对话生成功能。

2025-12-08 13:08:34 620

原创 25_Spring AI 干货笔记之 Perplexity 聊天

Spring AI通过复用OpenAI客户端与Perplexity AI集成,提供具备实时网络搜索能力的语言模型服务。开发者需配置专属API密钥、基础URL与模型路径,并选择合适的Perplexity模型。文章详述了自动配置步骤、属性设置及运行时选项,并指出Perplexity目前暂不支持工具调用及多模态输入。同时提供了完整的控制器代码示例,帮助开发者快速构建集成实时搜索的AI对话应用。

2025-12-08 12:20:16 724

原创 24_Spring AI 干货笔记之 Ollama 聊天

Spring AI通过OllamaChatModel支持本地部署和运行各类大型语言模型(LLMs)。开发者可灵活配置,包括自动拉取模型、设置思考模式以观察推理过程、实现多模态(图像)输入,并利用结构化输出确保JSON格式响应。文章详细阐述了自动配置与属性设置、运行时选项、函数调用以及与OpenAI API的兼容性,为在本地环境中高效构建和测试AI应用提供了完整的解决方案和代码示例。

2025-12-08 11:26:45 1105

原创 23_Spring AI 干货笔记之 NVIDIA 聊天

本文详细介绍了Spring AI与NVIDIA LLM API的集成方案。通过复用现有的OpenAI客户端,开发者只需配置API密钥、基础URL(指向NVIDIA端点)并显式设置max-tokens参数,即可调用NVIDIA提供的各类大语言模型(如Llama)。文章涵盖了自动配置、属性详解、运行时选项覆盖及函数调用示例,为快速构建基于高性能NVIDIA推理引擎的AI应用提供了完整指南。

2025-12-07 17:38:37 1026 5

原创 22_Spring AI 干货笔记之 MiniMax 聊天

本文介绍了Spring AI与MiniMax语言模型的集成方案。开发者通过配置API密钥,利用Spring Boot自动配置可快速启用聊天模型,支持同步与流式调用。文章详述了属性配置、运行时选项以及手动配置方法,并提供了完整的控制器代码示例。此外,还阐述了MiniMax特有的网页搜索功能及其调用方式,为构建基于MiniMax的智能对话助手提供了完整技术指南。

2025-12-07 11:32:30 1172

【软件开发工具】Windows平台VSCode安装配置与常用插件及快捷键使用指南,含软件安装包

内容概要:本文详细介绍了在Windows系统下安装、配置Visual Studio Code(VSCode)的完整流程,并提供了常用的插件推荐与快捷键汇总。内容涵盖从官网下载安装包、自定义安装路径、配置中文语言包和主题,到推荐实用插件如Auto Rename Tag、Live Server、vscode-icons等,提升开发效率。同时,文档系统整理了VSCode的各项快捷键,包括基础编辑、导航、搜索替换、多光标操作、调试及集成终端等功能,帮助用户快速掌握编辑器的高效使用方式。 适合人群:前端开发者、初学者及希望提升开发效率的程序员;适用于刚接触VSCode或希望系统学习其配置与快捷操作的用户。 使用场景及目标:①用于新环境搭建时快速配置VSCode;②通过安装推荐插件优化Web开发体验;③利用快捷键提升编码效率,减少对鼠标的依赖;④作为日常开发中的查阅手册,熟练掌握VSCode各项功能。 阅读建议:建议按照文档顺序逐步操作,先完成安装与基础配置,再根据开发需求安装对应插件,重点练习常用快捷键,结合实际项目进行实践,以达到熟练运用的效果。

2025-11-26

【Java开发环境】Windows平台IntelliJ IDEA安装配置指南:集成Maven与Docker的IDE初始化设置方案,含软件安装包

内容概要:本文详细介绍了在Windows操作系统下安装与配置IntelliJ IDEA的完整流程,涵盖从官网下载安装包、自定义安装路径、选择安装选项到完成安装的各个步骤,并进一步讲解了首次启动后的基本全局设置,包括接受用户协议、隐私数据共享选择、必要插件(如Docker、AI助手、Lombok)的安装以及Maven环境和自动编译功能的配置,帮助用户快速搭建高效的Java开发环境。; 适合人群:Java初学者、刚接触IntelliJ IDEA的开发者、需要在Windows平台配置IDE的编程学习者或软件开发人员; 使用场景及目标:①为Java项目开发准备集成开发环境;②掌握IntelliJ IDEA的基本配置方法,提升开发效率;③集成常用工具插件以支持现代化开发需求(如Docker容器化、Lombok简化代码等); 阅读建议:建议读者按照文档顺序逐步操作,结合实际安装界面进行对照设置,确保每一步配置正确,特别是Maven和插件部分,对后续开发至关重要。

2025-11-26

【Python开发环境配置】Windows平台Miniconda3安装与虚拟环境管理:科学计算与项目隔离方案部署,含软件安装包

内容概要:本文详细介绍了在Windows系统下安装与配置Miniconda3的完整流程,涵盖从官网下载安装包、图形化安装步骤,到后续的环境优化配置,如修改conda默认源为清华大学镜像以提升下载速度、自定义虚拟环境存储路径以管理磁盘空间。同时,文章还讲解了如何通过Anaconda Prompt进行常用conda命令操作,包括创建、查看、激活与退出虚拟环境,并简要提及PyCharm中配置命令行工具的方法,帮助用户高效搭建Python开发环境。 适合人群:Python初学者、数据科学从业者、需要管理多个Python项目的开发人员,以及对Miniconda或环境隔离工具有使用需求的技术人员; 使用场景及目标:①用于快速部署轻量级Python环境管理工具Miniconda3;②解决默认环境下虚拟环境占用C盘空间的问题,实现路径自定义;③加速包下载过程,提升开发效率;④配合IDE(如PyCharm)进行项目开发; 阅读建议:建议读者按照文档顺序逐步操作,在执行每一步命令时理解其作用,尤其是路径设置和镜像源配置部分,应根据自身系统实际情况调整参数,确保配置生效。

2025-11-26

【前端开发环境配置】Windows平台Node.js与pnpm安装指南:包含环境变量设置、全局路径配置及国内镜像源加速方法,含软件安装包

内容概要:本文详细介绍了在Windows操作系统下安装和配置Node.js及包管理工具pnpm的完整流程。内容涵盖Node.js的下载、安装、版本验证、全局模块与缓存路径的自定义配置、环境变量设置以及使用淘宝镜像源加速下载的方法。随后,文章进一步指导用户通过npm全局安装pnpm,并对其全局仓库、安装路径、bin路径、状态文件目录和缓存路径进行个性化配置,同时设置国内镜像源以提升使用效率。; 适合人群:前端开发初学者、Web开发者、需要在本地搭建Node开发环境的技术人员;适用于有一定计算机操作基础但对Node生态配置不熟悉的用户。 使用场景及目标:①帮助开发者快速搭建稳定高效的Node.js开发环境;②优化包管理工具的存储路径与访问权限,避免权限不足或磁盘混乱问题;③通过配置国内镜像源解决网络延迟导致的安装失败问题;④为后续使用pnpm管理项目依赖打下基础。 阅读建议:建议读者按照文档步骤逐步操作,注意路径与权限设置细节,每完成一步应进行验证(如命令行查看版本或路径),确保配置生效。对于企业级开发或团队协作项目,可参考本文标准化环境配置流程,提高开发一致性。

2025-11-26

Windows环境下Ollama安装配置与大模型管理技术指南,保姆级图文教程

内容概要:本文详细介绍了在Windows系统下安装、配置Ollama以及管理大语言模型的操作流程。内容涵盖Ollama的下载与安装步骤、环境变量的配置方法(特别是通过设置OLLAMA_MODELS变量指定模型存储路径)、从官方仓库拉取大模型(如qwen2.5:7b)的具体操作,并说明了Ollama API默认监听的11434端口及相关网络验证命令。此外,文档还系统整理了常用的CLI命令,包括模型的创建、拉取、列出、查看信息、复制、删除,模型的运行与停止,服务启动,以及帮助和版本查询等,便于用户高效管理本地大模型。; 适合人群:具备基本命令行操作能力,对本地部署大语言模型感兴趣的技术人员或开发者;适合AI爱好者、初级到中级水平的研发人员; 使用场景及目标:①在本地Windows环境中搭建Ollama平台并运行大模型;②通过命令行高效管理模型生命周期,优化存储路径避免C盘占用过高;③调用Ollama API进行应用开发或集成; 阅读建议:建议按照文档顺序逐步操作,重点注意环境变量配置后需重启电脑,所有命令可结合实际需求在CMD中调试执行,建议结合官方文档进一步拓展使用。

2025-11-22

【数据库运维】Windows平台Redis安装配置与管理工具部署指南:实现本地服务搭建及远程连接,含软件安装包

内容概要:本文详细介绍了在Windows环境下安装配置Redis及其图形化管理工具的完整流程。内容涵盖Redis的下载、解压与服务安装,通过批处理脚本注册并启动Redis服务;设置系统环境变量以便全局调用Redis命令;修改redis.conf配置文件,包括开放外部访问(bind 0.0.0.0)、启用后台运行(daemonize yes)和设置访问密码(requirepass);最后介绍了一款第三方Redis桌面管理工具Another Redis Desktop Manager的下载、安装及连接Redis服务器的操作步骤,并提供了服务启停与验证方法。 适合人群:具备基本计算机操作能力,正在学习或需要在Windows平台部署Redis的开发人员、运维人员。 使用场景及目标:①帮助开发者快速在本地Windows系统搭建可用的Redis服务;②实现远程连接与可视化管理,提升开发调试效率;③掌握Redis服务的基本配置与安全管理。 阅读建议:操作过程中需以管理员权限执行关键步骤,注意配置文件备份,设置强密码保障安全,建议在测试环境中先行演练后再应用于生产环境。

2025-11-22

【数据库技术】Windows平台PostgreSQL与Vector扩展安装指南:实现向量相似性搜索功能配置,含软件安装包

内容概要:本文详细介绍了在Windows环境下安装和配置PostgreSQL数据库及其Vector扩展的完整流程。首先从官方渠道下载PostgreSQL 16.8版本并进行图形化安装,包括设置数据库存储路径、超级用户密码、端口号及语言选项等步骤;随后重点讲解了如何为PostgreSQL安装开源的Vector扩展,用于支持向量相似性搜索功能,涵盖下载扩展源码、解压文件、安装Visual Studio编译环境、使用nmake命令编译安装以及最终在数据库中通过CREATE EXTENSION命令启用vector扩展的具体操作。文中还提供了使用pgAdmin和Navicat等工具连接数据库的说明。; 适合人群:具备基本数据库知识,正在学习或从事PostgreSQL相关开发、AI向量检索技术应用的开发者和技术人员;尤其适合需要在本地Windows环境搭建向量数据库的初学者。 使用场景及目标:①帮助用户快速部署PostgreSQL数据库环境;②实现对高维向量数据的存储与相似性搜索,支撑如推荐系统、语义搜索、AI嵌入模型应用等场景;③掌握PostgreSQL扩展机制及C/C++扩展模块的编译安装方法。; 阅读建议:此文档操作性强,建议读者按步骤逐步实践,注意路径和环境变量的正确配置,确保以管理员权限执行关键命令,避免权限或路径错误导致安装失败。同时建议熟悉PostgreSQL基础语法和扩展机制以更好理解安装原理。

2025-11-20

数据库管理工具Navicat在Windows系统的安装配置与激活方法详解,含软件安装包

内容概要:本文详细介绍了在Windows操作系统下安装、配置并激活Navicat Premium 15的完整流程,涵盖从官网下载安装包、自定义安装路径、创建快捷方式,到使用第三方注册机进行手动激活的关键步骤。重点说明了激活过程中需关闭杀毒软件、断开网络连接,并通过补丁工具修改程序文件以实现永久激活的技术操作,同时提供了图文指引以确保每一步骤清晰可执行。; 适合人群:需要使用数据库管理工具的开发人员、数据库管理员或测试人员,尤其是希望免试用限制使用Navicat功能的用户;具备基本计算机操作能力且熟悉数据库相关概念的技术人员。 使用场景及目标:①帮助用户顺利完成Navicat Premium的本地安装与激活;②解决因激活服务器不可用导致的无法使用问题;③通过手动激活方式绕过试用限制,长期稳定使用软件全部功能; 阅读建议:此文档涉及第三方注册机的使用,存在安全风险和版权争议,建议仅用于学习目的,在合法授权的前提下使用正版软件;操作时应严格按照步骤执行,注意备份系统或虚拟环境隔离,避免对主机造成不良影响。

2025-11-20

【数据库管理】Windows平台MySQL 8.4.4安装配置指南:免安装版初始化与服务部署技术解析,含软件安装包

内容概要:本文详细介绍了在Windows操作系统下安装和配置MySQL数据库的完整流程,重点以MySQL 8.4.4免安装版为例进行操作说明。内容涵盖下载安装包、解压文件、创建并配置my.ini配置文件、初始化数据库、安装MySQL服务、启动服务以及首次登录后修改root用户密码等关键步骤。文中特别强调了初始化过程中生成的临时密码的获取与保管,并提供了具体的命令行操作指令和参数说明,帮助用户顺利完成数据库环境搭建。 适合人群:具备基本计算机操作能力,正在学习或需要在本地部署MySQL数据库的初学者及开发人员;适用于数据库入门者、后端开发者或运维相关人员; 使用场景及目标:①用于在Windows系统上快速部署MySQL免安装版本,构建本地开发测试环境;②帮助用户理解MySQL服务的安装机制、配置文件的作用及数据库初始化流程;③指导完成首次安全设置,如修改默认密码,保障数据库基本安全; 阅读建议:在操作前建议仔细阅读每一步说明,严格按照顺序执行命令,注意替换实际路径中的安装目录和数据目录。配置文件中的参数可根据实际需求调整,建议初次使用者先按照文档默认设置完成安装,再逐步深入学习MySQL配置优化。

2025-11-20

【软件开发工具】Windows平台Maven安装配置指南:环境变量设置与本地仓库优化

内容概要:本文详细介绍了在Windows操作系统下安装和配置Maven的完整流程,涵盖从下载安装包到环境变量设置、验证安装结果以及自定义本地仓库路径和镜像源的全过程。文章首先引导读者从Maven官网下载指定版本的压缩包并解压至指定目录,接着指导进行系统环境变量的配置,包括新建MAVEN_HOME变量并在PATH中引用其bin目录,随后通过命令行执行mvn -v指令验证安装是否成功。最后,文章还讲解了如何修改conf目录下的settings.xml文件,自定义本地仓库存储路径以优化磁盘空间使用,并推荐替换默认镜像源为国内或更高效的镜像以提升依赖下载速度。; 适合人群:Java开发初学者、刚接触Maven工具的程序员、需要在Windows环境下搭建Maven开发环境的软件工程人员;具备基本计算机操作能力和开发背景者更佳。 使用场景及目标:①帮助开发者快速完成Maven在Windows系统的部署与配置;②解决因默认仓库位置不合理或中央仓库访问慢导致的构建效率低下问题;③为后续基于Maven管理项目依赖、构建Java应用打下基础环境支持。 阅读建议:此资源以实操为导向,建议读者边阅读边同步操作,严格按照步骤配置环境变量和修改XML文件,注意路径书写规范与语法正确性,避免因格式错误导致配置失效,同时可结合IDE集成Maven进一步提升开发效率。

2025-11-20

【Java开发环境】Windows平台JDK17安装与配置:JAVA-HOME及PATH环境变量设置方法

内容概要:本文详细介绍了在Windows操作系统下安装和配置JDK(Java Development Kit)的完整流程,重点以JDK17为例进行演示。内容涵盖从Oracle官网下载JDK压缩包、解压到指定目录(如D盘根目录),到配置系统环境变量(包括设置JAVA_HOME变量和PATH路径),最后通过命令行工具验证安装是否成功,确保java -version、javac和java命令可正常运行。文档结构清晰,步骤明确,配有操作指引,适合初学者快速完成Java开发环境的搭建。 适合人群:Java初学者、刚接触编程或需要配置开发环境的在校学生及入门级开发者; 使用场景及目标:①为学习Java语言搭建基础运行与编译环境;②准备Java相关开发或考试环境(如IDEA、Eclipse等集成开发工具前置配置);③解决因环境变量配置错误导致的“命令无法识别”等问题; 阅读建议:在操作过程中应严格按照文档步骤执行,注意环境变量路径的准确性,建议在每一步后进行验证,避免配置错误影响后续开发。同时推荐结合实际开发工具进一步测试环境可用性。

2025-11-20

《全球人工智能社会发展研究报告(2025)》

内容概要:《全球人工智能社会发展研究报告(2025)》由上海市人工智能与社会发展研究会发布,聚焦全球人工智能的社会应用及其带来的双重影响。报告指出,人工智能作为新质生产力的核心引擎,驱动产业智能化升级,释放医疗、教育等领域的巨大潜力;同时,也带来数据泄露、算法偏见等系统性风险。报告选取了八个关键议题,包括算力革命、模型幻觉、数据让渡、劳动转型、智能鸿沟、人机主体性、大国博弈和敏捷治理,深入剖析各议题的前沿进展、核心争议和发展趋势,为政策制定者、研究者及产业界提供兼具理论洞见与实践价值的参考框架。 适合人群:对人工智能及其社会影响感兴趣的政策制定者、学者、产业界人士、技术从业者及关注社会发展的大众读者。 使用场景及目标:①帮助政策制定者理解人工智能的社会影响,制定科学合理的政策;②为学者提供研究思路和方向,推动学术研究;③为企业提供行业发展趋势,指导业务发展;④提高公众对人工智能技术及其社会影响的认知。 其他说明:报告基于技术演进和社会发展的双重逻辑,遵循技术本体-社会辐射-治理反馈的逻辑链路,通过系统梳理近两年人工智能领域的前沿研究成果,构建具有前瞻性的研究范式与方法论体系,为后续研究提供可能的思路与方向。报告不仅关注技术本身,更强调技术与社会的互动关系,旨在引导人工智能成为人类文明的向善建构性力量。

2025-08-05

《人工智能安全治理白皮书(2025)》总结

内容概要:《人工智能安全治理白皮书(2025)》由中国联通研究院等多家单位联合编写,聚焦人工智能(AI)技术快速发展带来的安全风险与挑战。白皮书系统梳理了AI技术发展历程、应用发展趋势及安全治理体系,分析了AI基础设施、数据、模型算法和应用四大维度的安全风险。针对这些风险,白皮书提出了涵盖法律法规、标准规范、技术解决方案等多方面的综合治理措施,并分享了中国联通、华为、百度、360、奇安信、超聚变、恒安嘉新和浙江大学等单位的成功案例。最后,白皮书从法律法规完善、标准体系建设、前沿技术攻关和人才培养等维度提出发展建议,旨在推动AI技术安全、健康、可持续发展。 适用人群:对人工智能安全治理感兴趣的政策制定者、研究人员、企业管理人员及技术人员。 使用场景及目标:①帮助政策制定者了解AI安全治理现状,完善相关政策法规;②指导研究人员开展AI安全技术研究;③协助企业管理者提升AI应用的安全管理水平;④为技术人员提供具体的AI安全技术解决方案。 阅读建议:本文内容详尽,建议读者先浏览目录和前言,了解白皮书的整体框架和主要内容。然后根据自身需求,重点关注AI安全风险分析、技术解决方案及行业案例部分,结合实际工作场景进行深入学习和实践。

2025-08-05

《人工智能治理的未来》

内容概要:本文详细解读了阿联酋人工智能宪章的12项原则,针对人工智能全生命周期的实施提供了可操作的建议,并对照KPMG可信人工智能框架进行映射,为人工智能治理、风险管理以及监管合规提供了实用见解。这些原则涵盖了安全、算法偏见、数据隐私、透明度、人工监督、治理与问责、技术卓越、人类承诺、与人工智能和平共处、促进人工智能意识、遵守条约和适用法律等方面。阿联酋宪章特别强调人类监督、包容性、安全性和法律合规性,与全球人工智能伦理标准相契合。随着全球监管框架的演变,基于原则的治理已成为人工智能监管的基础方法。阿联酋通过其人工智能2031战略以及发布的宪章,展现了区域和全球领导力,确保人工智能安全、公平和透明地部署。 适合人群:从事人工智能研究、开发和管理的专业人员,包括但不限于技术专家、产品经理、政策制定者、法律顾问和企业管理者。 使用场景及目标:①确保人工智能系统的安全性,防止潜在风险;②识别和消除算法偏见,确保公平性;③保护用户数据隐私,遵守相关法律法规;④提高人工智能系统的透明度,增强公众信任;⑤确保人工监督机制的存在,维护伦理和社会标准;⑥促进技术卓越,推动持续创新;⑦确保人工智能技术服务于公共利益,提升人类福祉;⑧促进人工智能意识,创建包容性未来;⑨确保人工智能系统符合国际条约和地方法律,实现合法合规。 其他说明:本文不仅提供了理论框架,还结合了现实世界的例子和具体实施步骤,帮助组织将原则转化为实际行动。通过构建透明、包容和以人为本的AI系统,企业可以解锁新的机遇,获得利益相关者的信任,并在日益AI驱动的经济中实现差异化。此外,文中还介绍了KPMG可信人工智能框架,为组织提供了一套实用工具和方法论,以支持人工智能生命周期的每个阶段。

2025-08-05

【AI技术人才供需】2025年AI技术人才供需洞察:高学历高薪化趋势及行业区域需求分析

内容概要:本文详细分析了2025年AI技术人才的供需状况。报告指出,AI技术岗位呈现出高学历化和高薪化的显著特征,近一年AI技术人才需求同比增长6.53%,其中硕博学历需求占比接近47%,50万以上年薪的职位占比超过30%。算法工程师需求最高,占比67.17%,深度学习和机器学习领域的需求增长迅速。行业方面,互联网行业对AI技术人才的需求最大,家电行业需求增长最快。区域上,长三角地区需求最旺盛,北京、上海、深圳三城需求最多。AI技术人才呈现年轻化、高学历、重点院校出身的特点,30岁以下人才占比近60%,985/211院校毕业人才占比近48%。当前AI技术人才市场处于高度供不应求状态,尤其是搜索算法、推荐算法等细分领域。 适合人群:对AI技术领域感兴趣的研究人员、求职者、企业招聘负责人。 使用场景及目标:①帮助求职者了解AI技术岗位的市场需求和薪资水平,指导职业规划;②为企业招聘提供参考,制定合理的招聘策略;③为政策制定者提供数据支持,促进AI技术人才培养和行业发展。 阅读建议:读者应重点关注AI技术岗位的高学历和高薪化趋势,以及不同行业和地区的需求差异,结合自身情况进行职业规划或招聘决策。同时,关注AI技术人才的紧缺状况,提前做好应对措施。

2025-08-05

【城市治理领域】基于AI技术的城市治理应用现状与前景分析:提升基础设施管理、公共服务供给及公共安全保障效能

内容概要:本文全面探讨了人工智能(AI)技术在城市治理中的应用现状、实践案例和发展前景。文章首先概述了城市化进程中面临的交通拥堵、环境污染、资源紧张等挑战,指出AI技术凭借强大的数据处理、分析与预测能力为城市治理注入了新的活力。随后,文章详细介绍了AI在基础设施管理(如交通管理、环境治理、自然资源管理等)、公共服务供给(如政务服务、养老服务等)以及公共安全保障(如治安管理、应急管理等)三个关键领域的具体应用,展示了其提升城市治理效能的独特优势。最后,文章展望了未来发展趋势,强调技术融合创新、治理模式转型和伦理安全体系完善的必要性,为城市管理者、从业者及关注城市发展的各界人士提供了有益参考。 适合人群:城市管理者、政策制定者、科技从业者、研究人员以及关注城市发展的社会各界人士。 使用场景及目标:①了解AI技术如何赋能城市基础设施管理,如交通拥堵治理、环境监测等;②探索AI在优化城市公共服务供给方面的作用,如智能审批、健康监测等;③掌握AI强化城市公共安全保障的方法,如智能监控、灾害预警等;④探讨未来城市治理的技术融合创新、治理模式转型及伦理安全体系完善的方向。 其他说明:文章结合大量实际案例和政策背景,详细阐述了AI技术在城市治理中的应用,不仅提供了理论指导,还展示了实际应用效果,有助于读者全面理解AI技术如何提升城市治理效能。阅读过程中,建议重点关注AI技术在不同场景中的具体实现方式及其带来的实际效益。

2025-08-05

物联网中MQTT协议详解:轻量化发布/订阅模型的通信机制及应用

内容概要:本文深入解析了MQTT协议的各个方面,涵盖协议基础、核心概念、消息结构、连接生命周期、安全性机制、持久性和离线消息处理、协议扩展与优化以及其在物联网中的典型应用。文中首先介绍了MQTT的历史背景和发展现状,并详细讨论了其发布-订阅模式的工作原理,强调其轻量级、低带宽等特点。接下来解释了MQTT的关键概念如主题、发布者、订阅者、保留消息、持久会话和服务质量(QoS)等,并对消息结构做了细致分解。接着阐述了MQTT连接生命周期的各个阶段及其重要性,讨论了如何通过安全性机制如TLS/SSL、认证等方式保护通信链路的安全。此外,还涉及到消息重发与确认机制、分布式Broker架构等内容。文中特别指出MQTT在低带宽、高延迟网络环境下具有的显著优势,尤其是其对智能家居、车联网、工业物联网的应用贡献。最后介绍了若干流行的MQTT实现方案及相关工具。 适用人群:本文适合对MQTT有一定兴趣的技术从业者,包括但不限于物联网开发人员、系统设计师及其他关注高效可靠消息传输解决方案的专业人士。 使用场景及目标:主要用于帮助技术人员全面了解MQTT协议及其特性;为企业级用户评估MQTT能否满足自身需求时提供了理论依据和技术指南;同时辅助研究者和爱好者探索更多有关MQTT的应用潜力和未来发展趋势。 其他说明:文中提到了大量具体的例子和细节,以便读者更好地理解每一个环节的作用和意义。此外,文中多次提及MQTT与其他协议的区别,并给出了一些实际项目的建议和指导。 标签1,标签2,... 标签5

2025-02-12

Windows 11家庭中文版安装Docker Desktop详尽步骤与优化方法

内容概要:本文提供了一部详细的图文教程,用于指导如何在Windows 11家庭中文版上成功安装Docker Desktop,重点介绍了准备工作中涉及的Hyper-V、虚拟化技术和WSL的开启和配置步骤,以及后续的Docker Desktop的安装和相关配置(如国内镜像源设置),最后附带验证测试部分,确保安装成功。 适用人群:适合具有一定计算机基础的开发者或技术人员,尤其是首次接触容器化应用或打算将环境迁移到Docker的企业和个人。 使用场景及目标:帮助个人和团队快速在Win11家庭版操作系统上部署Docker,为本地开发、测试和持续集成提供强大支持;同时对现有安装路径和服务进行了优化调整,提高了用户体验与工作效率。 其他说明:文中详细解释了每个步骤的操作方法,并提供了常见问题解决方案,如网络连接问题导致的无法下载WSL分布等,使整个流程更加顺畅易懂,减少了新手用户的挫败感。

2025-02-12

深度学习推理能力提升:DeepSeek-R1强化学习模型的研发及其应用

内容概要:本文介绍了 DeepSeek 团队研发的第一个基于强化学习(RL)的语言模型——DeepSeek-R1-Zero 和其升级版本 DeepSeek-R1。DeepSeek-R1-Zero 使用纯RL方式训练,在多项推理任务上展现卓越能力,解决了无需初阶段监督微调的问题。但是,DeepSeek-R1-Zero 面临表达可读性和语言混淆等挑战。为此,DeepSeek 团队进一步引入带有高质量数据作为冷启动和迭代式的 RL 微调机制,从而产生了更具可解释性、高性能推理模型 DeepSeek-R1。DeepSeek-R1 推理能力与 OpenAI 开发的相关推理模型相当,并成功地在多种推理密集型任务上展现了顶级性能,如编码和数学等领域。此外,文章还提出了 DeepSeek-R1 产生的知识传递至小型稠密模型的成功案例,进一步扩展了模型的适用范围。文中对模型性能做了详细评测,并展示了其在实际应用场景中取得的进步。 适合人群:对该主题感兴趣的机器学习研究人员、开发者以及希望提升语言模型推理性能的专业从业者,尤其对于希望通过纯RL路径提升语言模型的人工智能研究人员。 使用场景及目标:DeepSeek-R1 主要适用于需要复杂推理的场景,如编码竞赛、数学问题解答、文档解析及其他高推理负载任务。通过模型提供的强大推理能力和可读性,可以帮助专业人员在这些领域内获得更好的效果。同时,在教育场景中的潜力巨大,有助于学生理解和解答问题。 其他说明:文章详细阐述了强化学习对模型推理性能的影响,揭示了未来通过大规模强化学习提升语言模型潜力的可能性。尽管存在如训练耗时长、需要大量资源等问题,但模型在性能上的飞跃显示出这种方法的巨大优势。未来的工作重点将是改善多轮对话、复杂角色扮演等任务中的性能,优化不同语境下的多语言支持,并增强在各类编程任务中的实用性。此外还将继续探索通过强化学习来改进模型,尤其是在软件工程方面应用的潜能。

2025-01-29

jquery上传插件Uploadify3.2中文详细参考手册

jquery上传插件Uploadify3.2中文详细参考手册

2016-09-24

MyEclipse集成maven配置

MyEclipse集成maven配置,内容比较详细,带有截图哦,方便大家交流学习,(*^__^*) 嘻嘻……

2014-03-04

MyEclipse10集成GWT

MyEclipse10集成GWT,网上例子比较少,现在大家提供方便!

2013-03-14

方便易用的取色器

方便易用的取色器,解压即可用,功能强大哦,(*^__^*) 嘻嘻……

2014-03-04

三大框架整合

SSH2+Mysql整合适合初学者,共同学习交流。

2014-03-12

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除