06_TensorFlow2数学计算大揭秘:让AI也学会‘加减乘除’,笑料不断,干货满满!

在这里插入图片描述

1. 科学计算

Tensorflow2 重新组织了数学计算模块,其提供了数学计算、数值处理的全维度接口,方便了使用者对数据的处理。

2. tf.math 模块常用函数列表

Tensorflow 提供了丰富的数学计算函数,并将这些函数统一到了 tf.math 模块中,常用的函数类型如下表所示。

在这里插入图片描述

关于数学计算所有的API请学者自行查阅文档:https://tensorflow.google.cn/api_docs/python/tf 从左侧导航栏找到tf.math模块,即可浏览查看所有的数据计算api及其使用方法。

3. 基本运算

3.1 加减乘除

加法

tf.math.add(x, y, name=None)

减法

tf.math.subtract(x, y, name=None)

乘法

tf.math.multiply(x, y, name=None)

除法

tf.math.divide(x, y, name=None)

import tensorflow as tf
# 定义张量常量
a = tf.constant([3, 8])
b = tf.constant([2, 5])
# 加法
add = tf.math.add(a, b)
# 减法
sub = tf.math.subtract(a, b)
# 乘法
mul = tf.math.multiply(a, b)
# 除法
div = tf.math.divide(a, b)
print(add)
print('-'*50)
print(sub)
print('-'*50)
print(mul)
print('-'*50)
print(div)
tf.Tensor([ 5 13], shape=(2,), dtype=int32)
--------------------------------------------------
tf.Tensor([1 3], shape=(2,), dtype=int32)
--------------------------------------------------
tf.Tensor([ 6 40], shape=(2,), dtype=int32)
--------------------------------------------------
tf.Tensor([1.5 1.6], shape=(2,), dtype=float64)

3.2 指数、平方、对数

指数运算

tf.math.pow( x, y, name=None )

开方运算

tf.math.sqrt( x, name=None )

对数运算

tf.math.log( x, name=None )

a = tf.constant([[1.,2.],[3.,4.]])
# 指数为2
b = tf.math.pow(a,2)
# 开方 
c = tf.math.sqrt(b)  
 # 自然指数运算
d = tf.math.exp(a) 
# 对数运算,以自然常数e为底的对数
e = tf.math.log(a)
# 对各个元素求平方
f = tf.math.square(a)   
print(b)
print('-'*50)
print(c)
print('-'*50)
print(d)
print('-'*50)
print(e)
print('-'*50)
print(f)
tf.Tensor(
[[ 1.  4.]
 [ 9. 16.]], shape=(2, 2), dtype=float32)
--------------------------------------------------
tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float32)
--------------------------------------------------
tf.Tensor(
[[ 2.7182817  7.389056 ]
 [20.085537  54.59815  ]], shape=(2, 2), dtype=float32)
--------------------------------------------------
tf.Tensor(
[[0.        0.6931472]
 [1.0986123 1.3862944]], shape=(2, 2), dtype=float32)
--------------------------------------------------
tf.Tensor(
[[ 1.  4.]
 [ 9. 16.]], shape=(2, 2), dtype=float32)

3.3 矩阵相乘

tf.matmul(x, y, name=None)

a = tf.constant([[1,2],[3,4]])
b = tf.constant([[5,6],[7,8]])
result = tf.matmul(a,b)
print(result)
tf.Tensor(
[[19 22]
 [43 50]], shape=(2, 2), dtype=int32)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

腾飞开源

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值