poj——1088(dp之递归加记忆化搜索)

题目地址:http://poj.org/problem?id=1088

小结:可以用递归+记忆化搜索

dp[i][j]:从i j 开始的最长的路径。

dp[i][j] = max {dp[i][j-1], dp[i][j+1], dp[i-1][j], dp[i+1][j], 0} + 1;即当前的路径只与它的上、下、左、右的路径有关。

#include <iostream>
#include <cmath>
#include <string>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <cstdio>
#include <map>
#include <vector>
#include <set>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
#define INF 0x7fffffff
#define MAX(a,b) a>b?a:b
#define MIN(a,b) a>b?b:a
#define N 101
int m,n;
int dp[N][N];
int a[N][N];
void init(){
	  for(int i=0;i<n;i++)
	 	 for(int j=0;j<m;j++)
 	        {
 	     	scanf("%d",&a[i][j]);
		dp[i][j]=0;
 	        }
}
int dfs(int x,int y){
	if(dp[x][y]) return dp[x][y];
	int bottom=0,left=0,top=0,right=0;
	if(x&&a[x-1][y]<a[x][y]) top=dfs(x-1,y);
	if(y&&a[x][y-1]<a[x][y]) right=dfs(x,y-1);
	if(x<n-1&&a[x+1][y]<a[x][y]) bottom=dfs(x+1,y);
	if(y<m-1&&a[x][y+1]<a[x][y]) left=dfs(x,y+1);
	int maxx=0;
	maxx=MAX(maxx,left);
	maxx=MAX(maxx,right);
	maxx=MAX(maxx,bottom);
	maxx=MAX(maxx,top);
	return maxx+1;
}
void solve(){
	int ans=1;
	for(int i=0;i<n;i++)
	 for(int j=0;j<n;j++)
	  {
  		dp[i][j]=dfs(i,j);
  		ans=MAX(ans,dp[i][j]);
  	  }
    printf("%d\n",ans);
}
int main()
{
       scanf("%d%d",&n,&m);
       init();
       solve();	
       return 0;
} 


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值