SPOJ Equation :求 1/n!=1/x+1/y 的解的个数

题目地址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=29547#problem/M

解析:

题目就是求1/n! = 1/x + 1/y 的解的个数,看样例知要考虑(x,y)对数的关系。
设 m=n! ,由等式知x,y必定大于n!,所以再设 x=n!+k=m+k 带入 1/m=1/x+1/y 中化简得到y=m*m/k+m,因y为整数,所以要求k整除m*m,即k为m*m的因子,问题便转化为求n!*n!的因子个数, 设n!=p1^e1 * p2^e2 * p3^e3 *...*pk^ek,则 n!*n!= p1^(2*e1) * p2^(2*e2) *...*pk^(2*ek) 。 则因子个数sum=(2*e1+1)*(2*e2+1)*...*(2*ek+1); 答案很大,需要高精度。用java处理方便!
import java.util.*;
import java.math.*;

public class Main {
	static int N = 10050;
	static int q = 0;
	
	static int prime[] = new int[N];

	public static void sieve_prime( ){
		int i;
		int  flag[] = new int [N];
		for (i = 2; i * i < N; i++) {
			if (flag[i] == 0)
				prime[q++] = i;
			for (int j = i * i; j < N; j += i) {
				flag[j] = 1;
			}
		}
		for (; i < N; i++)
			if (flag[i] == 0)
				prime[q++] = i;
	}

	public static void solve(int n) {
		BigInteger ans = BigInteger.valueOf(1);		
		int temp,count;
		for (int i = 0; prime[i]<= n && i < q && n > 1; i++) {
				count = 0;
				temp= prime[i];
				while (temp <=	n) {
				    count+=n/temp;
					temp*=prime[i];
				}
				ans = ans.multiply(BigInteger.valueOf(count * 2 + 1));
		}
		System.out.println(ans);
	}
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		sieve_prime();
		int x;
		while (in.hasNext()) {
			x = in.nextInt();
			if (x == 0)   break;
			solve(x);
		}
		in.close();
	}	 
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值