微型真空气体采样泵气路的流导计算

   微型真空气体采样泵常常又被称为微型气泵、取样泵等,其特点是效率高;运动机构与输送介质完全隔离、对介质无污染;非动密封,无泄漏;可靠性好;体积小、重量轻;具有自吸能力;不怕空转;无需润滑保养;自身噪音低。微型薄膜泵作为真空水泵使用时,无需灌泵,启动后立即吸水排水。它既能抽气又能抽水,无水时也不怕干转。微型薄膜采样泵的优点尤其是小巧、无污染性、自吸性使它在科学实验、仪器仪表行业等场合得到了广泛运用。近年来我国气体采样泵、液体采样泵发展迅速,目前国内低端的气体采样泵市场基本上被国货以价格优势占领。高端的气体采样泵、液体采样泵主要用于工业级产品、医用设备仪器、军用级产品等,目前高端领域主要有进口品牌THOMASKNFGSAT等和国产气海泵。气海各型号的真空采样泵都经过了连续运转考核,寿命可达数千小时,品质好、市场占有率很高。气海的调速空气采样泵、液体采样泵采用了先进的无刷电机,高品质的长寿命部件,杜绝了杂波干扰。在调节流量上实现了突破,自带PWM(脉宽调制)线,能方便可靠地调节流量,克服了原来降压调速的一些缺点。能输出电机转速反馈信号,可实时监控。具有完善的自我保护功能,在泵卡死、过热等意外情况下能自动停机。实际使用中用户所需的流量、扬程经常变动,当小于泵参数时,可以利用PWM线地调节转速和流量,这对降低噪音、精准控制、节能很有好处。实际使用时我们发觉采样泵的抽气速率与泵的性能说明存在差异。这是由于采样泵说明书中的抽气速率是在标准实验条件下测得的,而用户实际的使用条件各不相同。如果用户管路的阻力较大,会明显影响气体流量。现将真空系统气路的的流导计算介绍如下。

    对于真空采样系统管路的一个元件(包括管道、阀门等),其入口压力为P1,出口压力为P2,流经元件的气体流量是Q,实验和理论都证明Q的大小与元件两端的压差P1-P2成正比,即Q=CP1-P2)。比例常数C称为流导,用来表示通过气体的能力。在国际单位制中,气流量Q的单位是Pa·m3sP1-P2的单位是Pa,所以流导的单位是m3s。当压差P1-P2一定时,流导C的值较大,那么流经管路元件的流量Q就较大。

    微型真空采样泵使用中,被抽气体多为室温下的空气。 粘滞流的室温空气流经薄壁孔时,试验发现:当P1不变时,随P2下降,通过孔口的流速和流量都增加,但当P2下降到某一值时,它们都不再随P2下降而增加,可以根据薄壁孔的流导公式计算求得。

    真空系统一般采用圆截面管道,气体从一个大容积进入管道的入口孔时,孔口对气流存在影响,但当管道的长度比较长,管口对气流的影响则可以忽略。在工程计算中,通常把管道的轴线长度L与管道直径D的比值LD≥20的管道视为长管,可以不考虑管口的影响。设圆管的轴线长度为Lm),直径为Dm),管道中平均压力为PPa),则其粘滞流条件下对于室温空气的流导为C=1340*D^4*P/L

    组成真空系统的管路各式各样,各元件之间有的是串联,有的属于并联。如果是n个管道元件串联,C1C2...Cn分别是元件的流导,则它们串联之后的整段管路的流导为C=1/[(1/C1)+(1/C2)+...+(1/Cn)]

    如果有n条管路并联组成一段管路,则并联之后整段管路的流导为C=C1+C2+...+Cn

    在设计真空采样系统时,要计算管路元件以及管路的流导。为了保证抽气速率,客户使用时应尽量缩短抽气管道长度,增大管道口径,减少弯头、阀门等阻力元件。

Luotf-2016-05

 

 

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值