hdu5866(cf494c,dp)

题目链接:多校第十场1010。
http://acm.split.hdu.edu.cn/showproblem.php?pid=5866
原题是cf494C
http://codeforces.com/contest/494/problem/C
参考了一下cf的tutorial和viethoho的代码。

题目大意:有n个点构成了一棵树,每个节点都有一个权值,然后树上有m个操作,作用于m个不同的节点,每个操作有p的概率成功,成功了以后包含这个点的子树的每个点的权值加一,问m个操作后树上的权值最大值的期望。

数据范围: T<=5,n<=100000,m<=3000

Tutorial:这是一个关于期望的概率dp,根据数据范围,可以知道对m动规比较可行。

由于是树,显然是自下而上dp,并且仔细思索以后发现状态要开两维,一维是序,一维记录增量。于是我们记
dp[i][j]ij
我们可以先通过dfs,以 O(n) 的复杂度计算出mx数组,记录子树中的初始最大权值。
则转移方程可以写出:

dp[i][k]=(1p[i])Πdp[j][min(mx[i]mx[j]+k,m)]+p[i]Πdp[j][min(mx[i]mx[j]+k1,m)]ji

其中,为了方便,应该添加一个作用于root,成功概率为0的操作。
于是问题转化为如何求后继操作了。
我们可以求出每个节点在dfs操作中的入序与出序,可以发现这个操作正好对入序与出序中的点有影响,于是问题转化为了求区间关系,具体过程见代码。

最终答案等于
dp[root][0]mx[root]+Σ(dp[root][i]dp[root][i1])(mx[root]+i)

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;

const int maxm = 3005;
const int maxn = 100000 + 5;

int n,m;

vector<int> G[maxn];
vector<int> g[maxm];

int v[maxn],mx[maxn];


int dfs_clock;
int root,deg[maxn];
int ind[maxn],outd[maxn];
int id[maxm];

void dfs(int u,int fa){
    ind[u] = ++dfs_clock;
    for(int i = 0;i < G[u].size();i++){
        int v = G[u][i];
        if(v == fa) continue;
        dfs(v,u);
    }
    outd[u] = ++dfs_clock;
}

struct segment{
    int l,r;
    int id;
    double pro;
    bool operator < (const segment & rhs) const{
        return l < rhs.l || (l == rhs.l && r > rhs.r);
    }
}s[maxm];

int Dfs(int u,int fa){
    int maxv = v[u];
    for(int i = 0;i < G[u].size();i++){
        int v = G[u][i];
        if(v == fa) continue;
        maxv = max(maxv,Dfs(v,u));
    }
    return mx[u] = maxv;
}

double dp[maxm][maxm];

void solve(int u){
    for(int i = 0;i < g[u].size();i++) solve(g[u][i]);
    for(int i = 0;i <= m;i++){
        double a = 1.0 - s[u].pro;double b = s[u].pro;
        for(int j = 0;j < g[u].size();j++){
            a *= dp[g[u][j]][min(mx[s[u].id] - mx[s[g[u][j]].id] + i,m)];
            b *= dp[g[u][j]][min(mx[s[u].id] - mx[s[g[u][j]].id] + i - 1,m)];
        }
        if(i != 0 ?dp[u][i] = a + b : dp[u][i] = a);
    }
}

int main(int argc, const char * argv[]) {
    while(scanf("%d%d",&n,&m) == 2){
        stack<int> st;
        while(!st.empty()) st.pop();
        for(int i = 1;i <= n;i++) G[i].clear();
        for(int i = 1;i <= m;i++) g[i].clear();
        for(int i = 1;i <= n;i++) deg[i] = 0;
        for(int i = 1;i < n;i++){
            int u,v;
            scanf("%d%d",&u,&v);
            G[v].push_back(u);
            deg[u]++;
        }
        for(int i = 1;i <= n;i++){
            if(deg[i] == 0) root = i;
        }
        dfs_clock = 0;
        dfs(root,-1);
        for(int i = 1;i <= n;i++){
            scanf("%d",v + i);
        }
        for(int i = 1;i <= m;i++){
            int v;double p;
            scanf("%d%lf",&v,&p);
            s[i].l = ind[v];
            s[i].r = outd[v];
            s[i].pro = p;
            s[i].id = v;
        }
        m++;
        s[m].l = 1;
        s[m].r = dfs_clock;
        s[m].pro = 0;
        s[m].id = root;
        sort(s + 1,s + 1 + m);
        //cout << root << endl;
//        for(int i = 1;i <= m;i++) cout << s[i].l << " " << s[i].r << " " << s[i].pro << endl;
        Dfs(root,-1);
        //for(int i = 1;i <= n;i++) cout << mx[i] << endl;
        for(int i = 1;i <= m;i++){
            while(!st.empty() && s[i].r > s[st.top()].r) st.pop();
            if(!st.empty()) g[st.top()].push_back(i);
            st.push(i);
        }

        solve(1);

//        for(int i = 0;i <= m;i++) cout << dp[1][i] << endl;
        double ans = dp[1][0] * mx[root];
        for(int i = 1;i <= m;i++) ans += (dp[1][i] - dp[1][i - 1]) * (mx[root] + i);
        printf("%.6lf\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值