413. Arithmetic Slices 类别:动态规划 难度:Medium

题目:

A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

For example, these are arithmetic sequence:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
The following sequence is not arithmetic.

1, 1, 2, 5, 7

A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

The function should return the number of arithmetic slices in the array A.

Example:

A = [1, 2, 3, 4]

return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.

思路:

题目要求我们求出一个数列中有多少个元素个数大于等于3的等差数列,用动态规划算法来解决,用dp[0...m-1][0...n-1]来记录结果,要是dp[i][j] = ture则意味着序列从位置i  到 j 是一个等差数列,可以列出转移方程dp[i][j] = dp[i][j - 1]&&A[j] - A[j - 1] == A[j  - 1] - A[j - 2]。


程序:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
	if(A.size() < 3)
		return 0;
	
	int count = 0;
	vector<vector<bool> > dp(A.size(),vector<bool>(A.size(),false));
	
	for(int i = 0;i <= A.size() - 2;i++)
		dp[i][i + 1] = true;
	
	for(int i = 2;i <= A.size() - 1;i++)
	{
		for(int j = 0;j <= A.size() - 1 - i;j++)
		{
			if(dp[j][j + i - 1]&&A[j + i] - A[j + i - 1] == A[j + i - 1] - A[j + i - 2])
			{
				dp[j][j + i] = true;
				count++;
			}
			else
				dp[j][j + i] = false;
		}
	}
	return count;
        
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值