题目描述
小z最近当上了农场主!不过,还没有来得及庆祝,一件棘手的问题就摆在了小z的面前。农场的栅栏,由于年久失修,出现了多处破损。栅栏是由n块木板组成的,每块木板可能已经损坏也可能没有损坏。小z知道,维修连续m个木板(这m个木板不一定都是损坏的)的费用是sqrt(m)。可是,怎样设计方案才能使总费用最低呢?小z想请你帮帮。
输入输出格式
输入格式:
输入文件的第一行包含一个整数n,表示栅栏的长度。
第二行包含n个由空格分开的整数(长整型范围内)。如果第i个数字是0,则表示第i块木板已经损坏,否则表示没有损坏。
输出格式:
输出文件中仅包含一个实数,表示最小维修费用。
注意:答案精确到小数点后3位。
输入输出样例
输入样例:
9
0 -1 0 1 2 3 0 -2 0
输出样例:
3.000
数据规模:
30%的数据中,n <= 20。
100%的数据中,n <= 2500。
分析
一道肉眼可见的dp,只要搞清楚所有数的关系即可
错误示范
一开始,我用简单思想做(不是dp),发现能过8个点(一共10个点)
代码如下
#include<iostream>
#include<cstdio>
#include<iomanip> //setprecision头文件
#include<cmath> //sqrt头文件
using namespace std;
long long n,d=0,x,a,i;
//d保存损坏木板的最大下标
//x保存损坏木板的最小下标
double ans=0.0;
int main()
{
cin>>n;
x=n+1;
for(i=1;i<=n;i++)
{
cin>>a;
if(a==0)
{
x=min(x,i);
if(d<i)
{
if(sqrt(d-x+1)+1<sqrt(i-x+1)) //如果分开算更小的话,分开
{
//cout<<d<<" "<<x<<endl; 检查
ans+=sqrt(d-x+1);
x=i;
d=i;
//变换最小与最大的下标
}
d=i;
}
}
}
if(d==0&&x==n+1) //如果没有找到任何损坏的木板,输出0.000
{
cout<<"0.000";
return 0;
}//注意一定要有此判断,因为0的开方求不出来,会报错
//cout<<ans<<" "<<d<<" "<<x<<endl; 检查
ans+=sqrt(d-x+1);
cout<<fixed<<setprecision(3)<<ans; //输出三位数
return 0;
}
正确代码
后来我找到了正确方法——dp
代码如下
#include<iostream>
#include<cstdio>
#include<cmath> //sqrt头文件
#include<iomanip> //setprecision的头文件
using namespace std;
const int N=1e5+10;
double f[N]={0};
int a[N],n,i,j;
int main()
{
cin>>n;
for(i=1;i<=n;i++)
cin>>a[i];
for(i=1;i<=n;i++) //dp
{
f[i]=0x7f7f7f7f;
if(a[i]!=0)
f[i]=f[i-1];
for(j=0;j<i;j++)
f[i]=min(f[i],f[j]+sqrt(i-j));
}
cout<<fixed<<setprecision(3)<<f[n];
//printf("%.3lf",f[n]); 另外一种输出方法
return 0;
}
注意:注释较多,请注意理解