#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define inf 0x7fffffff
int n,m,st,ed;
int p[500100],q[500100];
int dis[500010],vis[500010];
int head[500010];
int cnt,u,v;
struct node
{
int v,c,next;
};
node E[5000100];
void add(int u,int v,int w) //建边
{
E[cnt].v=v;
E[cnt].c=w;
E[cnt].next=head[u];
head[u]=cnt++;
E[cnt].v=u;
E[cnt].c=0;
E[cnt].next=head[v];
head[v]=cnt++;
}
bool bfs()
{
memset(dis,0,sizeof(dis));
dis[st]=1;
queue<int>Q;
Q.push(st);
while(!Q.empty())
{
int d=Q.front();
Q.pop();
for(int i=head[d];i!=-1;i=E[i].next)
{
if(E[i].c&&!dis[E[i].v])
{
dis[E[i].v]=dis[d]+1;
Q.push(E[i].v);
}
}
}
return dis[ed]>0;
}
int dicnic(int low,int p) //增广
{
int f=low;
if(p==ed) return f;
for(int i=head[p];i!=-1;i=E[i].next)
{
if(E[i].c&&dis[E[i].v]==dis[p]+1)
{
int a=E[i].c;
int t=dicnic(min(a,low),E[i].v);
E[i].c-=t;
E[i^1].c+=t;
low-=t;
if(low<=0) break;
}
}
//printf("fjashdfj\n");
if(f-low<=0) dis[p]=-1;
return f-low;
}
int flow()
{
int sum=0;
while(bfs())
sum+=dicnic(inf,st);//参数位置不能改变
return sum;
}
int main()
{
int t,cas,i,j,k,temp;
scanf("%d",&t);
for(cas=1;cas<=t;cas++)
{
scanf("%d%d",&n,&m);
int sr=0,sc=0;
st=0,ed=n+m+1; //设置源点,汇点
cnt=0;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
scanf("%d",&p[i]);
add(st,i,p[i]); //源点到项目建边
sr+=p[i]; //总利润
}
for(i=1;i<=m;i++)
{
scanf("%d",&q[i]);
add(i+n,ed,q[i]); //问题到汇点建边
}
for(i=1;i<=n;i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&temp);temp++;
add(i,temp+n,inf); //项目到问题建边
}
}
for(i=1;i<=m;i++)
for(j=1;j<=m;j++)
{
scanf("%d",&temp);
if(temp==1)
add(i+n,j+n,inf); //问题建边,容量设为inf,可不用判环
}
int ans=sr-flow();
printf("Case #%d: ",cas);
printf("%d\n",ans);
}
return 0;
}
tjut 4971
最新推荐文章于 2020-06-02 15:25:00 发布
本文深入探讨了最大流问题的一种高效求解方法——迪尼奇算法(Dinic算法),包括算法的基本概念、实现细节及应用案例。通过对源点到汇点间网络流的构造,文章详细解释了如何通过增广路径来不断调整流量直至找到最大流,并提供了完整的C++代码实现。
摘要由CSDN通过智能技术生成