tjut 4971

本文深入探讨了最大流问题的一种高效求解方法——迪尼奇算法(Dinic算法),包括算法的基本概念、实现细节及应用案例。通过对源点到汇点间网络流的构造,文章详细解释了如何通过增广路径来不断调整流量直至找到最大流,并提供了完整的C++代码实现。
摘要由CSDN通过智能技术生成
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define inf 0x7fffffff
int n,m,st,ed;
int p[500100],q[500100];
int dis[500010],vis[500010];
int head[500010];
int cnt,u,v;
struct node
{
    int v,c,next;
};
node E[5000100];
void add(int u,int v,int w) //建边
{
    E[cnt].v=v;
    E[cnt].c=w;
    E[cnt].next=head[u];

    head[u]=cnt++;
    E[cnt].v=u;
    E[cnt].c=0;
    E[cnt].next=head[v];
    head[v]=cnt++;
}
bool bfs()
{
    memset(dis,0,sizeof(dis));
    dis[st]=1;
    queue<int>Q;
    Q.push(st);
    while(!Q.empty())
    {
        int d=Q.front();
        Q.pop();
        for(int i=head[d];i!=-1;i=E[i].next)
        {
            if(E[i].c&&!dis[E[i].v])
            {
                dis[E[i].v]=dis[d]+1;
                Q.push(E[i].v);
            }
        }
    }
    return dis[ed]>0;
}
int dicnic(int low,int p)  //增广
{
    int f=low;
    if(p==ed) return f;
    for(int i=head[p];i!=-1;i=E[i].next)
    {
        if(E[i].c&&dis[E[i].v]==dis[p]+1)
        {
            int a=E[i].c;
            int t=dicnic(min(a,low),E[i].v);
            E[i].c-=t;
            E[i^1].c+=t;
            low-=t;
            if(low<=0) break;
        }
    }
    //printf("fjashdfj\n");
    if(f-low<=0) dis[p]=-1;
    return f-low;
}
int flow()
{
    int sum=0;
    while(bfs())
        sum+=dicnic(inf,st);//参数位置不能改变
    return sum;
}
int main()
{
    int t,cas,i,j,k,temp;
    scanf("%d",&t);
    for(cas=1;cas<=t;cas++)
    {
        scanf("%d%d",&n,&m);
        int sr=0,sc=0;
        st=0,ed=n+m+1;  //设置源点,汇点
        cnt=0;
        memset(head,-1,sizeof(head));
        for(i=1;i<=n;i++)
        {
            scanf("%d",&p[i]);
            add(st,i,p[i]);  //源点到项目建边
            sr+=p[i];        //总利润
        }
        for(i=1;i<=m;i++)
        {
            scanf("%d",&q[i]); 
            add(i+n,ed,q[i]); //问题到汇点建边
        }
        for(i=1;i<=n;i++)
        {
            scanf("%d",&k);
            while(k--)
            {
                scanf("%d",&temp);temp++;
                add(i,temp+n,inf); //项目到问题建边
            }
        }
        for(i=1;i<=m;i++)
            for(j=1;j<=m;j++)
            {
                scanf("%d",&temp);
                if(temp==1)
                add(i+n,j+n,inf); //问题建边,容量设为inf,可不用判环
            }
        int ans=sr-flow(); 
         printf("Case #%d: ",cas);
        printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值