离散数学第一章命题逻辑(上)

这篇博客介绍了离散数学中的命题逻辑,包括命题及其表示方法,详细讲解了命题的真值、分类,以及命题的否定。接着讨论了联结词,如否定、合取、析取和蕴涵,并通过真值表进行解析。此外,还涉及了命题公式、翻译和真值表的功能,以及等价公式的概念。
摘要由CSDN通过智能技术生成

目录

1. 1 命题及其表示方法

1. 2 联结词

1. 3 命题公式与翻译

1. 4 真值表与等价公式


1. 1 命题及其表示方法

命题:

  1. 命题:

    • 定义:凡能分辨真假(更确切地说,具有真假意义的)的陈述句称作命题

    • 注:(1) 一切没有判断内容的句子,如命令句 (或祈使句)、感叹句、疑问句、二义性的陈述句等都不能作为命题。

    (2)判一个陈述句的真假与人的思想感情,语句所处环境、条件、时间、地点,判断标准,认知程度等有关,但只要能分辨真假均是命题。

    (3)把已知真假与能分辨真假区别开,只要能分辨真假,即为命题。

    (4)并非所有陈述句均是命题(如:悖论,即:自指谓(它的结论对自身而言))。

  2. 真值:

    • 命题(具有确切真值的陈述句)的具体的值,即命题所表达的判断结果称为命题的真值。

    • 当判断正确或符合客观实际时,称该命题真(True),否则称该命题假(False)。

    • 因命题只有两种真值,故称这种逻辑为二值逻辑

  3. 分类:命题有两种类型:原子命题复合命题

    • 原子(原始或简单)命题或原子(atoms) :

    不能分解为更简单的命题(不含有逻辑联结词的命题)

    • 复合(分子)命题(compositive propositions or compound statements): 由联结词、标点符号和原子命题复合构成的命题(由原子命题和逻辑联结词共同组成的命题:张三不是好人)。


命题表示:

  1. 命题标识符:

    • 表示命题的符号称为命题标识符

    • 大(小)写字母:P,Q,\cdotsp,q,\cdots也可,一般都用大写)。

    • 带下标的大(小)写字母:P_1,P_2,\cdotsp1,q1,\cdots也可,一般都用大写)。

    • 用方括号括起的数字:[1],[2],[3],\cdots

  2. 命题常量(proposition constants):

    • 表示具体命题的P,Q,R,S等命题标识符与F,T统称为命题常量

  3. 命题变元(proposition variable):

    • 如果命题标识符只表示任意命题的位置标志,以“T,F”或“1,0”为取值范围,它未指出符号所表示的具体命题 ,就称为命题变元

    • 变元可以表示任意命题,所以它不能确定真值,故命题变元不是命题。

      (1)指派:当命题变元用一个特定命题取代时,才能确定真值,这称为对命题变元进行指派

      (2)原子变元:当命题变元表示原子命题时,该变元称为原子变元

1. 2 联结词

联结词:

  1. 否定:

    • 定义:设P为一命题,P的否定是一个复合命题,记作\urcorner P。联结词“\urcorner”表示命题的否定,称为否定联结词或否定词,读作“非”或“not”。否定联结词有时亦可记作“ˉ”。\urcorner P读作“并非P”或“非P”。

    • 真值表:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值