目录
1. 1 命题及其表示方法
命题:
-
命题:
-
定义:凡能分辨真假(更确切地说,具有真假意义的)的陈述句称作命题。
-
注:(1) 一切没有判断内容的句子,如命令句 (或祈使句)、感叹句、疑问句、二义性的陈述句等都不能作为命题。
(2)判一个陈述句的真假与人的思想感情,语句所处环境、条件、时间、地点,判断标准,认知程度等有关,但只要能分辨真假均是命题。
(3)把已知真假与能分辨真假区别开,只要能分辨真假,即为命题。
(4)并非所有陈述句均是命题(如:悖论,即:自指谓(它的结论对自身而言))。
-
-
真值:
-
命题(具有确切真值的陈述句)的具体的值,即命题所表达的判断结果称为命题的真值。
-
当判断正确或符合客观实际时,称该命题真(True),否则称该命题假(False)。
-
因命题只有两种真值,故称这种逻辑为二值逻辑。
-
-
分类:命题有两种类型:原子命题和复合命题 。
-
原子(原始或简单)命题或原子(atoms) :
不能分解为更简单的命题(不含有逻辑联结词的命题)
-
复合(分子)命题(compositive propositions or compound statements): 由联结词、标点符号和原子命题复合构成的命题(由原子命题和逻辑联结词共同组成的命题:张三不是好人)。
-
命题表示:
-
命题标识符:
-
表示命题的符号称为命题标识符。
-
大(小)写字母:(也可,一般都用大写)。
-
带下标的大(小)写字母:(也可,一般都用大写)。
-
用方括号括起的数字:
-
-
命题常量(proposition constants):
-
表示具体命题的等命题标识符与统称为命题常量。
-
-
命题变元(proposition variable):
-
如果命题标识符只表示任意命题的位置标志,以“”或“”为取值范围,它未指出符号所表示的具体命题 ,就称为命题变元。
-
变元可以表示任意命题,所以它不能确定真值,故命题变元不是命题。
(1)指派:当命题变元用一个特定命题取代时,才能确定真值,这称为对命题变元进行指派。
(2)原子变元:当命题变元表示原子命题时,该变元称为原子变元。
-
1. 2 联结词
联结词:
-
否定:
-
定义:设为一命题,的否定是一个复合命题,记作。联结词“”表示命题的否定,称为否定联结词或否定词,读作“非”或“not”。否定联结词有时亦可记作“ˉ”。读作“并非P”或“非P”。
-
真值表:
-