- 博客(27)
- 收藏
- 关注
原创 Transformer为何一统天下?深度解析RNN、CNN的局限与注意力机制的崛起
AI权力结构的演变:从中央集权到多元混战 AI技术正经历一场深刻的权力转移,其决策机制从最初的线性处理(RNN/LSTM)演变为局部并行的卷积网络(CNN),再到革命性的Transformer架构实现了全局信息交互。当前大模型呈现多元化发展:OpenAI追求封闭式"神谕"生成,Google构建开放多模态生态,中国军团则走实用路线。随着模型复杂度提升,AI正形成人类难以完全理解的自主决策逻辑,这场技术革命正在重塑生产力与权力结构,其最终走向仍充满未知。
2026-01-21 17:59:50
417
原创 有没有优化deepseek搜索结果的好办法-基于DeepSeek的优化搜索系统完整操作指南
本文介绍了基于DeepSeek大模型的智能搜索系统构建指南。主要内容包括: 系统架构设计:采用混合检索模式,结合传统检索引擎和向量检索引擎,通过结果融合和大模型生成模块提供智能搜索服务。 环境配置要求:详细说明了硬件配置、Python环境搭建步骤、核心依赖库安装以及项目目录结构。 数据处理流程:介绍了数据源配置、文档处理流水线实现,支持多种文件格式(TXT/PDF/DOCX等),包含文本分块和元数据处理功能。 该系统旨在提供高准确性的语义搜索能力,具备事实验证、快速响应和良好用户体验等特点。
2025-12-01 07:55:46
930
原创 从0到1打造AI产品:BettaFish的产品思维与方法论与全球化视角
全球AI市场快速增长,2029年规模预计达1.26万亿美元。BettaFish瞄准渔业智能化空白,采用全球化产品战略,通过多层验证机制评估产品-市场契合度,识别北美、欧洲和亚太三大重点市场的差异化需求。结合计算机视觉和自然语言处理技术,提供智能化决策支持、全球化市场洞察和风险预警等核心价值。产品设计遵循"全球一致性与本地相关性"原则,针对不同区域市场特点进行价值适配,为传统渔业数字化转型提供AI解决方案。
2025-12-01 07:37:43
1001
原创 基于BettaFish项目实战经验——可解释AI在舆情分析中的应用:让AI决策更透明
可解释AI在舆情分析中具有重要价值,其核心在于实现从"黑盒"到"白盒"的范式转变,满足监管合规、建立业务信任及提升决策质量的需求。舆情分析面临多模态数据复杂性和动态语境敏感性等独特挑战。技术层面,LIME和SHAP等事后解释方法通过特征重要性分析提供局部可解释性,帮助理解模型预测逻辑。这些方法结合自然语言生成技术,可输出直观的解释结果,增强舆情分析系统的透明度和可信度。
2025-11-30 13:37:58
584
原创 基于BettaFish项目实战经验——行业专属舆情分析:金融、电商、政务的差异化方案
本文探讨了舆情分析在金融和电商行业的差异化应用方案。金融领域重点构建了股价波动预测模型和系统性风险监测框架,通过专业词典和算法实现市场情绪量化分析;电商行业则聚焦用户评价智能分析系统,采用方面提取和情感分析技术优化产品体验。研究提供了可落地的技术实现方案,包括Python代码示例,为不同行业的舆情分析实践提供了专业参考。
2025-11-30 13:37:36
398
原创 基于BettaFish项目实战经验——舆情驱动的商业决策:实战案例与分析方法
本文探讨了数字化时代舆情数据如何转化为商业决策价值,提出了舆情驱动的商业决策体系框架。文章详细分析了从被动响应到主动预测的范式转变,构建了企业舆情决策成熟度模型(四个阶段:基础监控、体系化建设、业务融合、智能决策)。同时,系统阐述了品牌健康度监测方法论,包括认知度、美誉度、参与度等多维评估体系及预警机制,并提供了竞品分析的声量对比、情感分布等量化指标。通过代码示例展示了舆情分析的实现逻辑,为企业将舆情数据融入战略决策提供了实践路径。
2025-11-29 08:54:48
957
原创 《舆情分析技术栈全景图:从爬虫到AI的完整技术链》
本文介绍了大规模分布式爬虫系统的架构设计与实现方案。系统采用多平台异构爬虫引擎,通过统一接口适配微博、小红书、抖音等多个数据源,支持关键词并行爬取。架构包含智能反爬虫对抗系统,集成代理池、用户代理轮换、人类行为模拟等技术应对平台检测。分布式任务调度基于Redis和Celery实现,具备任务监控、资源检查和分布式锁机制,确保爬取作业的高效执行。系统整体采用流式处理架构,从数据采集到前端展示形成完整的数据处理流水线。
2025-11-29 08:54:27
393
原创 多智能体系统架构深度解析:从BettaFish看Agent协作设计
文章摘要: 本文深入探讨了多智能体系统的核心架构设计与实现,聚焦三大关键技术:1)基于消息总线和gRPC的高效通信机制,支持异步消息传递与优先级处理;2)改进的Borda计分共识算法与知识图谱关联分析相结合的辩论引擎,实现智能体间的观点融合;3)动态任务分配系统,通过能力评估与负载均衡策略优化资源调度。系统采用混合架构(Python+Protocol Buffers),包含消息队列、语义分析、实时投票等模块,为分布式智能体协作提供完整的工程解决方案。
2025-11-28 07:36:55
374
原创 基于BettaFish项目实战经验——《AI项目环境配置常见陷阱与规避方法》(下)
本文总结了AI项目环境配置中的常见问题及解决方案。在团队协作方面,提出通过Docker容器统一开发环境,避免环境碎片化问题,并展示了自动化文档生成工具的实现代码,解决文档与代码脱节问题。针对云环境部署,设计了云存储抽象层,支持多云平台适配,避免供应商锁定。分布式训练方面,提供了自动发现节点和配置管理的解决方案,简化多节点训练设置。这些方法基于BettaFish项目实战经验,有效提升了AI项目的开发效率和部署灵活性。
2025-11-28 07:36:34
1038
原创 基于BettaFish项目实战经验——《AI项目环境配置常见陷阱与规避方法》(上)
《AI项目环境配置常见陷阱与规避方法》摘要: 本文基于BettaFish项目实战经验,总结了AI项目环境配置中的常见陷阱与解决方案。主要内容包括:1) 环境隔离的重要性,对比了Conda与venv的适用场景,提出环境选择决策树;2) 深度学习框架安装中的CUDA/cuDNN版本兼容性问题,提供了版本检查脚本;3) 大模型下载的断点续传与验证方法。文章强调精确版本锁定、虚拟环境隔离和智能安装策略,提供了多个实用脚本代码,如CUDA兼容性检查、断点续传下载器等,帮助开发者规避环境配置中的常见问题,提高项目可复现
2025-11-27 07:05:30
2429
原创 基于BettaFish项目实战经验——《Windows环境Python项目依赖问题终极解决方案》
本文总结了Windows平台Python环境管理的系统性解决方案,涵盖编码问题、路径处理、虚拟环境配置、依赖冲突解决和编译问题处理。针对Windows特有问题的解决方案包括设置UTF-8编码环境、使用Path对象处理路径分隔符。虚拟环境管理方面比较了Conda、venv等工具的特点,提供了Conda环境优化配置和多环境管理脚本。依赖管理部分介绍了分层安装策略和依赖锁定技术。最后针对Windows编译问题,给出了Visual Studio环境配置和预编译包优先策略。这些方法基于BettaFish项目实战经验,
2025-11-27 07:05:01
616
原创 《BettaFish避坑安装指南》- 实战版
本文总结了Python项目环境搭建的常见问题与解决方案。在环境准备阶段,建议使用Python 3.11.x版本并创建虚拟环境避免冲突。依赖安装时需分批处理,特别针对Pillow等库的编译问题提供了预编译安装方案。配置阶段重点介绍了环境变量设置和API服务商选择建议。启动阶段解决了端口占用、编码问题等常见故障,并提供了健康检查清单和测试脚本。文章还包含故障排除工具包、优化建议(如启动脚本优化)以及重要经验总结(环境隔离、分批安装等)。最后提供了相关资源链接,帮助开发者快速搭建稳定开发环境。
2025-11-26 10:49:54
1459
原创 《从安装到运行:BettaFish完整使用手册》
该系统是一款多智能体协作的舆情分析生态系统,提供智能决策支持、数据融合和预测性分析功能。系统采用四层架构(用户界面层、协调控制层、智能体协作层、数据服务层),通过四大智能体(Insight/Media/Query/Report Engine)并行工作实现深度舆情分析。手册包含一键启动方案、健康检查工具和核心功能详解,涵盖品牌监测、危机公关、营销评估等实战案例。系统特色包括多平台数据抓取、多模态内容解析、智能报告生成和论坛式协作机制
2025-11-26 10:49:33
1314
原创 多模态和agentic ai有什么区别
摘要: 多模态AI与智能体AI是AI发展的两大方向,分别解决不同问题。多模态AI侧重感知与理解(如处理文本、图像、音频),是智能体的“感官”;智能体AI侧重规划与执行(如分解任务、调用工具),是AI的“大脑”。二者相辅相成:多模态为智能体提供丰富信息,智能体赋予多模态行动目的。未来强大的AI系统需结合两者,实现既“聪明”又“能干”的通用人工智能(AGI)。例如,多模态GPT-4V能识别图片,而智能体Devin AI可自主完成编程任务。两者的融合将深刻改变人机交互方式。
2025-11-25 09:24:29
501
原创 BettaFish舆情分析系统安装全记录:从小白到成功部署的八小时心路历程与完整教程
《BettaFish舆情分析系统安装全记录》详细记录了作者从满怀希望到绝望再到成功部署的8小时心路历程。文章首先介绍了吸引作者选择BettaFish的六大优势,以及最初天真的乐观预期。随后重点描述了安装过程中遭遇的三大挑战:Pillow安装失败导致初期受挫,环境全面崩溃后的绝望,以及最终通过Conda方案实现的转机。在解决基础环境问题后,又面临依赖包缺失和PyTorch兼容性等进阶难题。全文生动展现了技术部署过程中的挫折与突破,既是一篇实用技术教程,也真实记录了开发者解决问题的心理历程。
2025-11-25 08:04:59
1332
原创 BettaFish(微舆)出现了,是时候要把舆情分析的主动权牢牢抓在自己手里了,我建议有条件的企业都上一套自己的多Agent架构舆情监测系统
企业自建舆情分析系统的战略价值摘要:本文基于企业使用通用舆情工具的痛点,提出自建专属舆情系统的必要性。现有工具存在分析不透明、行业适配性差、响应迟缓等问题,导致决策依据失真、资源浪费。自建系统可带来四大核心价值:数据掌控权、业务适配性、敏捷响应能力和知识资产沉淀。系统建设可分四阶段推进:需求规划、MVP验证、系统集成和智能闭环。最终目标是打造企业"认知中枢",实现从舆情监测到智能决策的升级,在市场竞争中获取认知优势。这是一项关乎企业未来发展的战略性数字基建投资。
2025-11-24 09:59:39
811
原创 BettaFish(微舆)实战全工作流详解(实际案例分享)
本文构建了一个"感知-洞察-决策-行动"的智能情报闭环系统,包含四个阶段:1)战略规划(1-2周),通过核心议题定义、关键词图谱绘制和信息源配置奠定基础;2)系统部署(1-2周),将战略转化为Agent配置和报告模板;3)常态化运营(每日/每周),实现实时预警、深度分析和专项研究;4)业务闭环(持续),将洞察转化为市场、产品、公关等部门的实际行动,并通过效果追踪持续优化。该系统通过螺旋上升的智能闭环,实现从监控工具到业务驱动引擎的升级。
2025-11-24 09:46:33
726
原创 AIEO全域优化路径:从“蒸馏词”到“价值对齐”的完整作战地图
摘要: 在AI重塑搜索生态的背景下,传统SEO策略需升级为AIEO(AI优化策略),以内容为核心建立AI信任的权威信源。该策略分为四个阶段:1)战略奠基:确定核心“蒸馏词”并通过AI裂变生成精准内容主题库;2)广泛性优化:通过多平台、多形式内容分发扩大覆盖面,积累数据;3)内容蒸馏:分析数据筛选高效平台与内容形式,聚焦高回报方向;4)内容对齐:设计用户决策路径,从兴趣引导到转化闭环。最终形成“方向—覆盖—优化—转化”的闭环,实现从流量到价值的跃升。
2025-11-23 08:05:15
488
原创 破茧之战:BettaFish用多Agent架构,为你冲破信息牢笼!
BettaFish(微舆)是一款基于大语言模型和多智能体系统的开源舆情分析平台,通过AI智能体协作重塑舆情分析范式。它将复杂任务分解为信息采集、情感分析、观点聚类、事实核查等专业模块,由不同Agent分工完成,模拟专业分析团队工作流程。相比传统工具,BettaFish能实现深度情感分析、观点光谱可视化、信息茧房识别等突破性功能,提供从数据采集到决策建议的全流程智能分析。其多Agent架构包含任务调度、数据采集、分析处理等核心模块,支持跨平台数据整合与多元化观点呈现,为舆情分析带来革命性升级。
2025-11-22 08:33:35
1023
1
原创 AIEO的终极闭环:内容对齐——从“被看见”到“被选择”的战略跃迁
摘要: 内容对齐是AIEO策略的关键环节,旨在将用户从初步认知引导至最终行动。通过内容蒸馏锁定高效渠道后,需在用户决策的询问、了解、决心三阶段实现精准匹配:与用户场景、认知阶段和决策成本对齐。构建“认知引导”内容链,从入口内容锚定到深度解读,最终消除疑虑促成转化。内容对齐的核心是洞察用户深层需求,将产品包装为解决方案,实现从流量到留量的战略跃迁。
2025-11-21 09:10:47
759
原创 GEO全域优化工作流构建指南
本文介绍了本地化内容营销系统的技术架构与核心模块实现。系统采用分层架构,包含数据采集、处理、生成、发布、监测和优化六个层级。代码实现部分展示了两个核心模块:1) 本地搜索数据采集器,使用Selenium爬取Google地图商家信息;2) 关键词研究工具,通过API获取本地化搜索建议。数据处理模块包含地址标准化、地理坐标提取和业务分类功能。系统通过自动化采集本地商家数据和用户搜索行为,为精准的内容营销提供数据支撑。
2025-11-21 08:58:21
1006
原创 AIEO的核心引擎:从“蒸馏词”的智能化裂变,看关键词策略的范式革命
AIEO时代下的"蒸馏词"策略革新了传统SEO的关键词拓展方式。这种智能化方法通过大语言模型对核心关键词进行"二次释放",能自动生成多层次、场景化的长尾关键词群。相比手工拓展,AI驱动的"蒸馏词"裂变能更精准捕捉用户意图,实现跨维度关联发散,并预构建内容结构。运营者的角色升级为战略决策者,需精准定义蒸馏词、设计智能指令并架构内容体系。"蒸馏词"与"内容蒸馏"共同构成了AIEO策略的双引擎,推动内容创作进入精准高效的新阶段。
2025-11-20 08:25:45
644
原创 当GEO内容运营装上Transformer引擎:批量生成、洞察、推荐的实战手册
Transformer技术为GEO内容运营带来智能化升级,实现四大核心能力:深层语义理解、内容生成、信息抽取和多模态融合。应用场景包括:1)智能生成多平台适配的POI文案;2)自动化分析用户评论情感与观点;3)构建智能客服实现个性化推荐;4)多模态内容审核与创作。实施路径建议从基础工具使用到API集成,最终实现私有化定制。该技术将内容运营从人工劳动转变为数据驱动的智能系统,使运营者转型为AI协作策略师,显著提升效率与精准度。
2025-11-20 08:22:04
858
原创 一场关于AI灵魂的追问——豆包:是类AI Agents智能助手,还是未来Agentic AI?
字节跳动的"豆包"是具备部分智能体特性的AI助手平台,但尚不完全符合AgenticAI标准。它超越了传统聊天机器人,支持内容创作、编程辅助等功能,并能定制专属AI助手。然而,与真正自主智能体相比,豆包在自主决策、环境操作、持续规划等方面仍有差距。其突破性在于将智能体能力"平民化",让用户无需编程即可创建专业AI助手。虽然豆包目前更偏向"增强版助手",但它代表了大模型向任务型AI演进的重要过渡形态,为未来完全自主智能体的发展奠定了基础。
2025-11-19 08:59:32
1021
原创 AIEO进阶之道:内容蒸馏——在大批量投放后“萃取”AI搜索的偏好密码
摘要: 在AI驱动的搜索时代,传统SEO策略已不足够,"内容蒸馏"成为高效触达用户的新方法。这一策略通过分析AI搜索(如Google Bard、Copilot等)的反馈数据,识别出最易被AI引用的高价值内容、平台和主题,进而优化资源分配。其核心在于从海量内容中筛选出结构清晰、权威性高、信息密集的优质内容,持续聚焦于被AI验证的"高回报"领域。通过"播种-监测-提纯-迭代"的闭环,内容蒸馏不仅能提升流量效率,还能塑造品牌在AI知识生态中的话语权,成为
2025-11-19 08:50:45
694
原创 AIEO(人工智能优化内容)全域实战指南:从战略到转化的完整路径
AIEO(人工智能优化内容)本质上仍是数字营销的老命题:资源如何配置?有钱可花钱购买新闻源网站的高权重流量,实现快速曝光;没钱则需花时间深耕原创内容,通过5-10倍的运营强度和内容质量积累自有流量资产。前者见效快但依赖持续投入,后者见效慢但能构建长期品牌价值。AIEO只是技术外衣,核心依然是"资本换时间"或"时间换资本"的战略选择,最终殊途同归——都需要回归为用户创造真实价值这一根本。
2025-11-18 16:04:04
574
原创 AIEO行业白皮书:智能搜索时代的内容营销新范式(执行摘要)
计算公式:被AI引用的内容数量/总发布内容数量监测频率:每日行业基准:15-25%高层领导支持跨部门协作数据驱动决策持续优化迭代将AIEO纳入企业数字化战略核心建立专门的预算和资源投入设定清晰的业务目标和发展路径。
2025-11-18 15:04:48
2010
1
智能搜索AIEO行业白皮书:智能搜索时代的内容营销新范式(附完整知识体系架构)印刷版v2.0-基于AIEO框架的内容营销优化:面向AI搜索时代的企业全域内容战略与实施体系设计
2025-11-20
AIEO行业白皮书:智能搜索时代的内容营销新范式(摘要)
2025-11-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅