特征值问题误差分析:Babuska–Osborn紧算子谱逼近理论
文章目录
上午好,各位。非常荣幸站在这里。且,今天我想给大家分享一些关于特征值问题的误差分析。
关于我们的讨论班,我提议用说英文。就是,关于我们的讨论班,我提一个建议。我觉得大家可以英文来讲。事实上,我们以前就这么干过,并且取得了不错的成果。为什么呢?因为大家以后有可能不免要在国际会议上做报告,要和外国人交流,讨论班就是一个很好的练习的机会。
有问题吗?那么今天就从我这里开始,以后我也很可能就参与到你们的讨论班当中来。try to persuade everybody……don’t be shy, just try, OK? Speak as more as possible。反对无效,反对无效,反对无效,好,我说服了所有人。
从一个简单的例子开始
一维例子
让我们从一个简单的例子讲起。让
Ω
=
[
0
,
π
]
\Omega = [0,\pi]
Ω=[0,π],我们寻找特征对
(
λ
,
u
)
,
u
≠
0
(\lambda,u), u \neq 0
(λ,u),u=0,使得
−
u
′
′
(
x
)
=
λ
u
(
x
)
in
Ω
,
u
(
0
)
=
u
(
π
)
=
0.
\begin{aligned} -u^{\prime \prime}(x) &=\lambda u(x) \quad \text { in } \Omega, \\ u(0) &=u(\pi)=0 . \end{aligned}
−u′′(x)u(0)=λu(x) in Ω,=u(π)=0.
这个问题具有真解
λ
=
k
2
,
u
=
sin
(
k
x
)
,
k
=
1
,
2
,
3
,
⋯
\lambda = k^2, u=\sin(kx), k=1,2,3,\cdots
λ=k2,u=sin(kx),k=1,2,3,⋯。取
V
=
H
0
1
(
Ω
)
V=H_{0}^{1}(\Omega)
V=H01(Ω),标准的有限元方法告诉我们,上述问题的弱形式是,寻找
λ
∈
R
\lambda \in \mathbb{R}
λ∈R 和非零
u
∈
V
u \in V
u∈V,使得,
∫
0
π
u
′
(
x
)
v
′
(
x
)
d
x
=
λ
∫
0
π
u
(
x
)
v
(
x
)
d
x
∀
v
∈
V
\int_{0}^{\pi} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\lambda \int_{0}^{\pi} u(x) v(x) \mathrm{d} x \quad \forall v \in V
∫0πu′(x)v′(x)dx=λ∫0πu(x)v(x)dx∀v∈V
它的有限元逼近是,取
V
h
=
span
{
φ
1
,
…
,
φ
N
}
⊂
V
V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\} \subset V
Vh=span{φ1,…,φN}⊂V,那么,我们要求
λ
h
∈
R
\lambda_{h} \in \mathbb{R}
λh∈R 和非零
u
h
∈
V
h
u_{h} \in V_{h}
uh∈Vh,使得
∫
0
π
u
h
′
(
x
)
v
′
(
x
)
d
x
=
λ
h
∫
0
π
u
h
(
x
)
v
(
x
)
d
x
∀
v
∈
V
h
\int_{0}^{\pi} u_{h}^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\lambda_{h} \int_{0}^{\pi} u_{h}(x) v(x) \mathrm{d} x \quad \forall v \in V_{h}
∫0πuh′(x)v′(x)dx=λh∫0πuh(x)v(x)dx∀v∈Vh
它的代数形式是,
A
x
=
λ
M
x
A \mathrm{x}=\lambda M \mathrm{x}
Ax=λMx
其中的
A
=
{
a
i
j
}
i
,
j
=
1
N
A=\left\{a_{i j}\right\}_{i, j=1}^{N}
A={aij}i,j=1N 是刚度矩阵,
M
=
{
m
i
j
}
i
,
j
=
1
N
M=\left\{m_{i j}\right\}_{i, j=1}^{N}
M={mij}i,j=1N 是质量矩阵,他们的元素是:
a
i
j
=
∫
0
π
φ
j
′
(
x
)
φ
i
′
(
x
)
d
x
a_{i j}=\int_{0}^{\pi} \varphi_{j}^{\prime}(x) \varphi_{i}^{\prime}(x) \mathrm{d} x
aij=∫0πφj′(x)φi′(x)dx
m
i
j
=
∫
0
π
φ
j
(
x
)
φ
i
(
x
)
d
x
m_{i j}=\int_{0}^{\pi} \varphi_{j}(x) \varphi_{i}(x) \mathrm{d} x
mij=∫0πφj(x)φi(x)dx
P1 元逼近
为了方便,我们不妨更具体一些。我们把
[
0
,
π
]
[0,\pi]
[0,π] 剖分成
N
+
1
N+1
N+1 份,区间长度为
h
=
1
N
+
1
h=\frac{1}{N+1}
h=N+11,有限元空间我们用
P
1
\mathcal{P}_{1}
P1。简单的计算,我们可以得到刚度矩阵和质量矩阵。
a
i
j
=
1
h
⋅
{
2
for
i
=
j
,
−
1
for
∣
i
−
j
∣
=
1
,
0
otherwise
m
i
j
=
h
⋅
{
4
/
6
for
i
=
j
1
/
6
for
∣
i
−
j
∣
=
1
0
otherwise
a_{i j}=\frac{1}{h} \cdot\left\{\begin{array}{ll} 2 & \text { for } i=j, \\ -1 & \text { for }|i-j|=1, \\ 0 & \text { otherwise } \end{array} \quad m_{i j}=h \cdot \begin{cases}4 / 6 & \text { for } i=j \\ 1 / 6 & \text { for }|i-j|=1 \\ 0 & \text { otherwise }\end{cases}\right.
aij=h1⋅⎩⎪⎨⎪⎧2−10 for i=j, for ∣i−j∣=1, otherwise mij=h⋅⎩⎪⎨⎪⎧4/61/60 for i=j for ∣i−j∣=1 otherwise
不妨取
N
=
3
N=3
N=3,我用 MATLAB 算了一下,
λ
h
(
1
)
=
1.0524
\lambda_h^{(1)} = 1.0524
λh(1)=1.0524,
λ
h
(
2
)
=
4.8634
\lambda_h^{(2)} = 4.8634
λh(2)=4.8634,
λ
h
(
3
)
=
12.843
\lambda_h^{(3)} = 12.843
λh(3)=12.843,且
u
h
(
1
)
=
[
0.7071
,
1
,
0.7071
]
u_h^{(1)} = [0.7071,1,0.7071]
uh(1)=[0.7071,1,0.7071],
u
h
(
2
)
=
[
1
,
0
,
−
1
]
u_h^{(2)} = [1,0,-1]
uh(2)=[1,0,−1],
u
h
(
3
)
=
[
0.7071
,
−
1
,
0.7071
]
u_h^{(3)} = [0.7071,-1,0.7071]
uh(3)=[0.7071,−1,0.7071],它刚好就是:
u
h
(
k
)
(
i
h
)
=
sin
(
k
i
h
)
,
i
=
1
,
…
,
N
u_{h}^{(k)}(i h)=\sin (k i h), \quad i=1, \ldots, N
uh(k)(ih)=sin(kih),i=1,…,N
λ
h
(
k
)
=
(
6
/
h
2
)
1
−
cos
k
h
2
+
cos
k
h
\lambda_{h}^{(k)}=\left(6 / h^{2}\right) \frac{1-\cos k h}{2+\cos k h}
λh(k)=(6/h2)2+coskh1−coskh
那么,我们可以很容易地看到,
∥
u
(
k
)
−
u
h
(
k
)
∥
V
=
O
(
h
)
∣
λ
(
k
)
−
λ
h
(
k
)
∣
=
O
(
h
2
)
\left\|u^{(k)}-u_{h}^{(k)}\right\|_{V}=O(h) \quad\left|\lambda^{(k)}-\lambda_{h}^{(k)}\right|=O\left(h^{2}\right)
∥∥∥u(k)−uh(k)∥∥∥V=O(h)∣∣∣λ(k)−λh(k)∣∣∣=O(h2)
这里的
u
(
k
)
(
x
)
=
sin
(
k
x
)
u^{(k)}(x)=\sin (k x)
u(k)(x)=sin(kx),
λ
(
k
)
=
k
2
\lambda^{(k)}=k^{2}
λ(k)=k2。事实上,做泰勒展开,
1
−
cos
k
h
2
+
cos
k
h
=
1
6
(
k
h
)
2
+
1
72
(
k
h
)
4
+
O
(
k
h
)
6
\frac{1-\cos k h}{2+\cos k h} = \frac{1}{6}(kh)^2+\frac{1}{72}(kh)^4+O(kh)^6
2+coskh1−coskh=61(kh)2+721(kh)4+O(kh)6.
代入即可得到这样一个估计。
一些观测和思考
一些重要观测:
- 数值解出来的特征函数,是正弦函数在节点处的插值。这意味着更密的网格才能捕捉到更高频率的特征。
- 数值特征值从上逼近特征值。
λ ( k ) ≤ λ h ( k ) ≤ λ ( k ) + C ( k ) h 2 \lambda^{(k)} \leq \lambda_{h}^{(k)} \leq \lambda^{(k)}+C(k) h^{2} λ(k)≤λh(k)≤λ(k)+C(k)h2
这是因为,
λ h ( k ) = k 2 + ( k 4 / 12 ) h 2 + O ( k 6 h 4 ) , as h → 0 \lambda_{h}^{(k)}=k^{2}+\left(k^{4} / 12\right) h^{2}+O\left(k^{6} h^{4}\right), \quad \text { as } h \rightarrow 0 λh(k)=k2+(k4/12)h2+O(k6h4), as h→0 - 特征值的误差估计是特征向量的两倍,更一般地,对于
p
p
p 阶拉格朗日元,
∥ u ( k ) − u h ( k ) ∥ V = O ( h p ) ∣ λ ( k ) − λ h ( k ) ∣ = O ( h 2 p ) \left\|u^{(k)}-u_{h}^{(k)}\right\|_{V}=O\left(h^{p}\right) \quad\left|\lambda^{(k)}-\lambda_{h}^{(k)}\right|=O\left(h^{2 p}\right) ∥∥∥u(k)−uh(k)∥∥∥V=O(hp)∣∣∣λ(k)−λh(k)∣∣∣=O(h2p)
一个问题是,如何衡量特征函数的误差?因为对应于同一个特征值的特征函数并不是唯一的。
- 特征子空间的任意一个元素都是特征函数。
- 单特征值的特征向量,即使做了归一化,依然在差一个符号的意义下不唯一。
一些基本定义
下面我们将介绍紧算子谱逼近理论。首先,我们给出一些定义。
X
X
X 是希尔伯特空间,
T
:
X
→
X
T: X \rightarrow X
T:X→X 是一个紧线性算子。
- 预解集(正则集)
ρ
(
T
)
\rho(T)
ρ(T):
{ z ∈ C ∣ ( z I − T ) 是 个 双 射 } . \left\{z \in \mathbb{C} \mid (zI-T)是个双射 \right\}. {z∈C∣(zI−T)是个双射}. - 预解算子: ( z − T ) − 1 (z-T)^{-1} (z−T)−1。这里省略了 I I I。
- 谱集: σ ( T ) = C \ ρ ( T ) \sigma(T)=\mathbb{C} \backslash \rho(T) σ(T)=C\ρ(T)。所有非零的谱集都是特征值,零可是可不是。
- λ − T \lambda-T λ−T 的上升重数( λ \lambda λ 非零特征值):最小整数 α \alpha α,使得 ker ( λ − T ) α = ker ( λ − T ) α + 1 \operatorname{ker}(\lambda-T)^{\alpha}=\operatorname{ker}(\lambda-T)^{\alpha+1} ker(λ−T)α=ker(λ−T)α+1。
- 特征值代数重数: dim ( ker ( λ − T ) α ) \dim (\operatorname{ker}(\lambda-T)^{\alpha}) dim(ker(λ−T)α) 。
- 广义特征向量: ker ( λ − T ) α \operatorname{ker}(\lambda-T)^{\alpha} ker(λ−T)α 中的元素。
- 广义特征向量的阶:一个广义特征向量是 k k k 阶的,当它在 ker ( λ − T ) k \operatorname{ker}(\lambda-T)^{k} ker(λ−T)k,但不在 ker ( λ − T ) k − 1 \operatorname{ker}(\lambda-T)^{k-1} ker(λ−T)k−1。
- 特征值几何重数: dim ( ker ( λ − T ) ) \dim (\operatorname{ker}(\lambda-T)^{}) dim(ker(λ−T))
当 T T T 是自共轭的时候,所有特征值的上升重数为 1,几何重数等于代数重数,所有的广义特征向量都是特征向量。
- Riesz 谱投影:给定一个闭合曲线
Γ
⊂
ρ
(
T
)
\Gamma \subset \rho(T)
Γ⊂ρ(T),它包围了一个特征值
λ
\lambda
λ,那么,谱投影
E
(
λ
)
:
X
→
X
E(\lambda): X \rightarrow X
E(λ):X→X,定义为:
E ( λ ) = 1 2 π i ∫ Γ ( z − T ) − 1 d z E(\lambda)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}(z-T)^{-1} \mathrm{~d} z E(λ)=2πi1∫Γ(z−T)−1 dz
谱投影的值域就是广义特征向量空间,
E
(
λ
)
X
=
ker
(
λ
−
T
)
α
E(\lambda) X=\operatorname{ker}(\lambda-T)^{\alpha}
E(λ)X=ker(λ−T)α
如果
Γ
\Gamma
Γ 包含更多的特征值,那么
E
(
λ
1
,
λ
2
,
…
,
λ
n
)
X
=
⨁
i
=
1
n
ker
(
λ
i
−
T
)
α
i
E\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) X=\bigoplus_{i=1}^{n} \operatorname{ker}\left(\lambda_{i}-T\right)^{\alpha_{i}}
E(λ1,λ2,…,λn)X=i=1⨁nker(λi−T)αi
- 共轭: T ∗ : X → X T^{*}: X \rightarrow X T∗:X→X 表示 T T T 的共轭。
T T T 和 T ∗ T^* T∗ 分享相同的几何重数,代数重数和共轭的特征值。
变分特征值问题
特征值问题
下面考虑变分特征值问题。我们主要考虑对称特征值的情况。
V
V
V 和
H
H
H 都是希尔伯特空间,
V
⊂
H
V \subset H
V⊂H 是稠密连续嵌入。令
a
:
V
×
V
→
R
a: V \times V \rightarrow \mathbb{R}
a:V×V→R 和
b
:
H
×
H
→
R
b: H \times H \rightarrow \mathbb{R}
b:H×H→R 是对称连续的双线性型,且
a
a
a 满足椭圆性,即
a
(
v
,
v
)
≥
α
∥
v
∥
V
2
∀
v
∈
V
a(v, v) \geq \alpha\|v\|_{V}^{2} \quad \forall v \in V
a(v,v)≥α∥v∥V2∀v∈V
那么我们要考虑的变分特征值问题是,寻求
λ
∈
R
\lambda \in \mathbb{R}
λ∈R,
u
∈
V
,
u
≠
0
u \in V, u \neq 0
u∈V,u=0:
a
(
u
,
v
)
=
λ
b
(
u
,
v
)
∀
v
∈
V
a(u, v)=\lambda b(u, v) \quad \forall v \in V
a(u,v)=λb(u,v)∀v∈V
解算子
T
:
H
→
H
T: H \rightarrow H
T:H→H 定义为:
a
(
T
f
,
v
)
=
b
(
f
,
v
)
∀
v
∈
V
a(T f, v)=b(f, v) \quad \forall v \in V
a(Tf,v)=b(f,v)∀v∈V
我们假定
T
T
T 是自共轭的,它是紧算子。它的特征值的倒数正好是变分特征值问题的特征值。
我们把特征值按一种自然的方式排一下:
λ
(
1
)
≤
λ
(
2
)
≤
⋯
≤
λ
(
k
)
≤
⋯
\lambda^{(1)} \leq \lambda^{(2)} \leq \cdots \leq \lambda^{(k)} \leq \cdots
λ(1)≤λ(2)≤⋯≤λ(k)≤⋯
我们用
u
(
k
)
u^{(k)}
u(k) 表示相应的特征函数,并且被归一化,
b
(
u
(
k
)
,
u
(
k
)
)
=
1
b\left(u^{(k)}, u^{(k)}\right)=1
b(u(k),u(k))=1。
E
(
k
)
=
span
{
u
(
k
)
}
E^{(k)}=\operatorname{span}\left\{u^{(k)}\right\}
E(k)=span{u(k)}。容易推导得到,特征函数具有正交性:
a
(
u
(
m
)
,
u
(
n
)
)
=
b
(
u
(
m
)
,
u
(
n
)
)
=
0
if
m
≠
n
a\left(u^{(m)}, u^{(n)}\right)=b\left(u^{(m)}, u^{(n)}\right)=0 \quad \text { if } m \neq n
a(u(m),u(n))=b(u(m),u(n))=0 if m=n
特征值刻画
Rayleigh 商是刻画特征值的一个重要工具。
λ
(
1
)
=
min
v
∈
V
a
(
v
,
v
)
b
(
v
,
v
)
,
u
(
1
)
=
arg
min
v
∈
V
a
(
v
,
v
)
b
(
v
,
v
)
,
λ
(
k
)
=
min
v
∈
(
⊕
i
=
1
E
(
i
)
)
⊥
a
(
v
,
v
)
b
(
v
,
v
)
,
u
(
k
)
=
arg
min
v
∈
(
⊕
i
=
1
E
(
i
)
)
⊥
a
(
v
,
v
)
b
(
v
,
v
)
,
\begin{aligned} \lambda^{(1)}=& \min _{v \in V} \frac{a(v, v)}{b(v, v)}, & u^{(1)}=& \underset{v \in V}{\arg \min } \frac{a(v, v)}{b(v, v)}, \\ \lambda^{(k)}=& \min _{v \in\left(\underset{i=1}{\oplus} E^{(i)}\right)^{\perp}} \frac{a(v, v)}{b(v, v)}, & u^{(k)}=& \underset{v \in\left(\underset{i=1}{\oplus} E^{(i)}\right)^{\perp}}{\arg \min } \frac{a(v, v)}{b(v, v)}, \end{aligned}
λ(1)=λ(k)=v∈Vminb(v,v)a(v,v),v∈(i=1⊕E(i))⊥minb(v,v)a(v,v),u(1)=u(k)=v∈Vargminb(v,v)a(v,v),v∈(i=1⊕E(i))⊥argminb(v,v)a(v,v),
这里的正交补的正交,可以由
a
a
a 和
b
b
b 诱导都可以。
假设
V
h
V_h
Vh 是
V
V
V 的希尔伯特子空间,和有限元中一样,变分问题的 Galerkin 离散可以写为:
a
(
u
h
,
v
)
=
λ
h
b
(
u
h
,
v
)
∀
v
∈
V
h
a\left(u_{h}, v\right)=\lambda_{h} b\left(u_{h}, v\right) \quad \forall v \in V_{h}
a(uh,v)=λhb(uh,v)∀v∈Vh
类似原来特征值问题,我们可以有:
a
(
T
h
f
,
v
)
=
b
(
f
,
v
)
∀
v
∈
V
h
a\left(T_{h} f, v\right)=b(f, v) \quad \forall v \in V_{h}
a(Thf,v)=b(f,v)∀v∈Vh
λ
h
(
1
)
≤
λ
h
(
2
)
≤
⋯
≤
λ
h
(
k
)
≤
⋯
\lambda_{h}^{(1)} \leq \lambda_{h}^{(2)} \leq \cdots \leq \lambda_{h}^{(k)} \leq \cdots
λh(1)≤λh(2)≤⋯≤λh(k)≤⋯
b
(
u
h
(
k
)
,
u
h
(
k
)
)
=
1
b\left(u_{h}^{(k)}, u_{h}^{(k)}\right)=1
b(uh(k),uh(k))=1
a
(
u
h
(
m
)
,
u
h
(
n
)
)
=
b
(
u
h
(
m
)
,
u
h
(
n
)
)
=
0
if
m
≠
n
a\left(u_{h}^{(m)}, u_{h}^{(n)}\right)=b\left(u_{h}^{(m)}, u_{h}^{(n)}\right)=0 \quad \text { if } m \neq n
a(uh(m),uh(n))=b(uh(m),uh(n))=0 if m=n
λ
h
(
1
)
=
min
v
∈
V
h
a
(
v
,
v
)
b
(
v
,
v
)
,
u
h
(
1
)
=
arg
min
v
∈
V
h
a
(
v
,
v
)
b
(
v
,
v
)
λ
h
(
k
)
=
min
v
∈
(
⊕
i
=
1
E
E
h
(
i
)
)
⊥
a
(
v
,
v
)
b
(
v
,
v
)
,
u
h
(
k
)
=
arg
min
v
∈
(
⊕
i
=
1
E
h
(
i
)
)
⊥
a
(
v
,
v
)
b
(
v
,
v
)
,
\begin{aligned} &\lambda_{h}^{(1)}=\min _{v \in V_{h}} \frac{a(v, v)}{b(v, v)}, \quad u_{h}^{(1)}=\underset{v \in V_{h}}{\arg \min } \frac{a(v, v)}{b(v, v)} \\ &\lambda_{h}^{(k)}=\min _{v \in\left(\begin{array}{c} \oplus \\ i=1 \end{array}{E} E_{h}^{(i)}\right)^{\perp}} \frac{a(v, v)}{b(v, v)}, \quad u_{h}^{(k)}=\arg \min _{v \in\left(\underset{i=1}{\oplus} E_{h}^{(i)}\right)^{\perp}} \frac{a(v, v)}{b(v, v)}, \end{aligned}
λh(1)=v∈Vhminb(v,v)a(v,v),uh(1)=v∈Vhargminb(v,v)a(v,v)λh(k)=v∈(⊕i=1EEh(i))⊥minb(v,v)a(v,v),uh(k)=argv∈(i=1⊕Eh(i))⊥minb(v,v)a(v,v),
具体不在赘述。因为
V
h
⊂
V
V_{h} \subset V
Vh⊂V,那么,容易知道
λ
(
1
)
≤
λ
h
(
1
)
\lambda^{(1)} \leq \lambda_{h}^{(1)}
λ(1)≤λh(1)
当考虑第
k
k
k 个特征值的时候,我们不能知道得到上述关系。所以我们介绍极小-极大值性质。
极小极大性质 特征值问题的第
k
k
k 个特征值
λ
(
k
)
\lambda^{(k)}
λ(k) 满足
λ
(
k
)
=
min
E
∈
V
(
k
)
max
v
∈
E
a
(
v
,
v
)
b
(
v
,
v
)
\lambda^{(k)}=\min _{E \in V^{(k)}} \max _{v \in E} \frac{a(v, v)}{b(v, v)}
λ(k)=E∈V(k)minv∈Emaxb(v,v)a(v,v)
这里
V
(
k
)
V^{(k)}
V(k) 表示
V
V
V 的 所有
k
k
k 维子空间。
对于离散问题,也有类似的性质:
λ
h
(
k
)
=
min
E
h
∈
V
h
(
k
)
max
v
∈
E
h
a
(
v
,
v
)
b
(
v
,
v
)
\lambda_{h}^{(k)}=\min _{E_{h} \in V_{h}^{(k)}} \max _{v \in E_{h}} \frac{a(v, v)}{b(v, v)}
λh(k)=Eh∈Vh(k)minv∈Ehmaxb(v,v)a(v,v)
那么,对于协调逼近
V
h
⊂
V
V_{h} \subset V
Vh⊂V,我们立马就可以得到所有的特征值从上面被逼近,即
λ
(
k
)
≤
λ
h
(
k
)
∀
k
\lambda^{(k)} \leq \lambda_{h}^{(k)} \quad \forall k
λ(k)≤λh(k)∀k
误差的刻画
诚如第一节所讲,误差的刻画是比较困难的。为此,我们定义两个希尔伯特空间的
δ
\delta
δ 距离:
δ
(
E
,
F
)
=
sup
u
∈
E
∥
u
∥
H
=
1
inf
v
∈
F
∥
u
−
v
∥
H
δ
^
(
E
,
F
)
=
max
(
δ
(
E
,
F
)
,
δ
(
F
,
E
)
)
\begin{aligned} \delta(E, F)=& \sup _{u \in E \atop\|u\|_{H}=1} \inf _{v \in F}\|u-v\|_{H} \\ \hat{\delta}(E, F)=& \max (\delta(E, F), \delta(F, E)) \end{aligned}
δ(E,F)=δ^(E,F)=∥u∥H=1u∈Esupv∈Finf∥u−v∥Hmax(δ(E,F),δ(F,E))
我们用
m
(
k
)
m(k)
m(k) 表示前
k
k
k 个不同特征值的特征空间维数,那么离散问题收敛到连续问题,我们可以写为:
对任意
ε
>
0
\varepsilon>0
ε>0 和
k
>
0
k>0
k>0,存在,
h
0
>
0
h_{0}>0
h0>0 使得,对所有的
h
<
h
0
h<h_{0}
h<h0,我们有
max
1
≤
i
≤
m
(
k
)
∣
λ
(
i
)
−
λ
h
(
i
)
∣
≤
ε
δ
^
(
⊕
(
k
)
i
=
1
E
(
i
)
,
⊕
=
1
m
(
k
)
E
h
(
i
)
)
≤
ε
\begin{gathered} \max _{1 \leq i \leq m(k)}\left|\lambda^{(i)}-\lambda_{h}^{(i)}\right| \leq \varepsilon \\ \hat{\delta}\left(\underset{i=1}{\oplus(k)} E^{(i)}, \stackrel{m(k)}{\oplus=1} E_{h}^{(i)}\right) \leq \varepsilon \end{gathered}
1≤i≤m(k)max∣∣∣λ(i)−λh(i)∣∣∣≤εδ^(i=1⊕(k)E(i),⊕=1m(k)Eh(i))≤ε
性质: 离散特征值问题收敛到连续特征值问题,当且仅当
∥
T
−
T
h
∥
L
(
H
)
→
0
当
h
→
0
\left\|T-T_{h}\right\|_{\mathcal{L}(H)} \rightarrow 0 \quad \text { 当} h \rightarrow 0
∥T−Th∥L(H)→0 当h→0
如果 T : V → V T: V \rightarrow V T:V→V 是紧的,且那么上式可以被改为
∥ T − T h ∥ L ( V ) → 0 当 h → 0 \left\|T-T_{h}\right\|_{\mathcal{L}(V)} \rightarrow 0 \quad \text { 当} h \rightarrow 0 ∥T−Th∥L(V)→0 当h→0
P h P_{h} Ph 是关于 a a a 的 Riesz 投影。
性质: 若 T T T 是紧的从 H H H 到 V V V, P h P_{h} Ph 强收敛到从 V V V 到 H H H 的单位矩阵,那么上一个性质成立从 H H H 到 H H H。
如果 T : V → V T: V \rightarrow V T:V→V 是紧的, P h P_h Ph 强点收敛于单位矩阵从 V V V 到 V V V,那么
∥ T − T h ∥ L ( V ) → 0 当 h → 0 \left\|T-T_{h}\right\|_{\mathcal{L}(V)} \rightarrow 0 \quad 当h \rightarrow 0 ∥T−Th∥L(V)→0当h→0
Babuska-Osborn 理论
收敛性
我们依然考虑希尔伯特空间中的对称问题。假定
X
X
X 是希尔伯特空间。
T
:
X
→
X
T: X \rightarrow X
T:X→X 是紧线性算子。我们考虑
T
h
T_h
Th 使得,
∥
T
−
T
h
∥
L
(
X
)
→
0
as
h
→
0
\left\|T-T_{h}\right\|_{\mathcal{L}(X)} \rightarrow 0 \quad \text { as } h \rightarrow 0
∥T−Th∥L(X)→0 as h→0
对于只包含一个特征值
λ
\lambda
λ 的曲线
Γ
⊂
ρ
(
T
)
\Gamma \subset \rho\left(T_{}\right)
Γ⊂ρ(T),当
h
h
h 足够小时,
Γ
⊂
ρ
(
T
h
)
\Gamma \subset \rho\left(T_{h}\right)
Γ⊂ρ(Th),且
Γ
\Gamma
Γ 刚好包含了
T
h
T_h
Th 的
m
m
m 个特征值。
更简单地说,考虑离散谱投影:
E
h
(
λ
)
=
1
2
π
i
∫
Γ
(
z
−
T
h
)
−
1
d
z
E_{h}(\lambda)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}\left(z-T_{h}\right)^{-1} \mathrm{~d} z
Eh(λ)=2πi1∫Γ(z−Th)−1 dz
我们有,
∥
E
(
λ
)
−
E
h
(
λ
)
∥
L
(
X
)
→
0
as
h
→
0
\left\|E(\lambda)-E_{h}(\lambda)\right\|_{\mathcal{L}(X)} \rightarrow 0 \quad \text { as } h \rightarrow 0
∥E(λ)−Eh(λ)∥L(X)→0 as h→0
我们可以总结为如下定理:
定理:
T
→
T
h
T \rightarrow T_h
T→Th,那么
λ
i
,
h
→
λ
\lambda_{i,h} \rightarrow \lambda
λi,h→λ,且
∥
E
(
λ
)
−
E
h
(
λ
)
∥
L
(
X
)
→
0
as
h
→
0
\left\|E(\lambda)-E_{h}(\lambda)\right\|_{\mathcal{L}(X)} \rightarrow 0 \quad \text { as } h \rightarrow 0
∥E(λ)−Eh(λ)∥L(X)→0 as h→0
通常的框架
V
1
V_1
V1 和
V
2
V_2
V2 是复希尔伯特空间,我们需要找
λ
∈
C
\lambda \in \mathbb{C}
λ∈C 和
u
∈
V
1
u \in V_{1}
u∈V1 且
u
≠
0
u\neq 0
u=0,使得,
a
(
u
,
v
)
=
λ
b
(
u
,
v
)
∀
v
∈
V
2
a(u, v)=\lambda b(u, v) \quad \forall v \in V_{2}
a(u,v)=λb(u,v)∀v∈V2
a
:
V
1
×
V
2
→
C
a: V_{1} \times V_{2} \rightarrow \mathbb{C}
a:V1×V2→C 且
b
:
V
1
×
V
2
→
C
b: V_{1} \times V_{2} \rightarrow \mathbb{C}
b:V1×V2→C 是拟双线性形式,
a
a
a 满足连续性,
∣
a
(
v
1
,
v
2
)
∣
≤
C
∥
v
1
∥
V
1
∥
v
2
∥
V
2
∀
v
1
∈
V
1
∀
v
2
∈
V
2
\left|a\left(v_{1}, v_{2}\right)\right| \leq C\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}} \quad \forall v_{1} \in V_{1} \forall v_{2} \in V_{2}
∣a(v1,v2)∣≤C∥v1∥V1∥v2∥V2∀v1∈V1∀v2∈V2
b
b
b 在紧范数
H
1
H_1
H1 (在
H
1
H_1
H1 的意义下,
V
1
V_1
V1 中的任意
V
1
V_1
V1 意义下的有界序列有柯西子列)的意义下是有界的,
∣
b
(
v
1
,
v
2
)
∣
≤
C
∥
v
1
∥
H
1
∥
v
2
∥
V
2
∀
v
1
∈
V
1
∀
v
2
∈
V
2
\left|b\left(v_{1}, v_{2}\right)\right| \leq C\left\|v_{1}\right\|_{H_{1}}\left\|v_{2}\right\|_{V_{2}} \quad \forall v_{1} \in V_{1} \forall v_{2} \in V_{2}
∣b(v1,v2)∣≤C∥v1∥H1∥v2∥V2∀v1∈V1∀v2∈V2
我们假定类强制性条件:
inf
v
1
∈
V
1
sup
v
2
∈
V
2
∣
a
(
v
1
,
v
2
)
∣
∥
v
1
∥
V
1
∥
v
2
∥
V
2
≥
γ
>
0
sup
v
1
∈
V
1
∣
a
(
v
1
,
v
2
)
∣
>
0
∀
v
2
∈
V
2
\
{
0
}
\begin{aligned} &\inf _{v_{1} \in V_{1}} \sup _{v_{2} \in V_{2}} \frac{\left|a\left(v_{1}, v_{2}\right)\right|}{\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}}} \geq \gamma>0 \\ &\sup _{v_{1} \in V_{1}}\left|a\left(v_{1}, v_{2}\right)\right|>0 \quad \forall v_{2} \in V_{2} \backslash\{0\} \end{aligned}
v1∈V1infv2∈V2sup∥v1∥V1∥v2∥V2∣a(v1,v2)∣≥γ>0v1∈V1sup∣a(v1,v2)∣>0∀v2∈V2\{0}
那么我们就可以引入解算子
T
:
V
1
→
V
1
T: V_{1} \rightarrow V_{1}
T:V1→V1 和
T
∗
:
V
2
→
V
2
T_{*}: V_{2} \rightarrow V_{2}
T∗:V2→V2,
a
(
T
f
,
v
)
=
b
(
f
,
v
)
∀
f
∈
V
1
∀
v
∈
V
2
,
a
(
v
,
T
∗
g
)
=
b
(
v
,
g
)
∀
g
∈
V
2
∀
v
∈
V
1
.
\begin{aligned} a(T f, v)=b(f, v) & \forall f \in V_{1} \forall v \in V_{2}, \\ a\left(v, T_{*} g\right)=b(v, g) & \forall g \in V_{2} \forall v \in V_{1} . \end{aligned}
a(Tf,v)=b(f,v)a(v,T∗g)=b(v,g)∀f∈V1∀v∈V2,∀g∈V2∀v∈V1.
从上面的假设中,我们可以推的
T
T
T 和
T
∗
T_{*}
T∗ 是个紧算子。
T
T
T 在
V
1
V_1
V1 上的共轭,可以写为:
T
∗
=
A
∗
∘
T
∗
∘
A
∗
−
1
T^{*}=A^{*} \circ T_{*} \circ A^{*-1}
T∗=A∗∘T∗∘A∗−1
其中
A
:
V
1
→
V
2
A: V_{1} \rightarrow V_{2}
A:V1→V2 是和
a
a
a 相关的线性算子。
我们也可以定义上述特征值问题的共轭特征值问题。寻求
λ
∈
C
\lambda \in \mathbb{C}
λ∈C 且
u
∈
V
2
u \in V_{2}
u∈V2,
u
≠
0
u \neq 0
u=0 使得,
a
(
v
,
u
)
=
λ
b
(
v
,
u
)
∀
v
∈
V
1
a(v, u)=\lambda b(v, u) \quad \forall v \in V_{1}
a(v,u)=λb(v,u)∀v∈V1
离散特征值问题公式形式能够被类似地定义,罗列如下:
a
(
v
1
,
h
,
v
2
)
=
λ
h
b
(
v
1
,
h
,
v
2
)
∀
v
2
∈
V
2
,
h
a\left(v_{1, h}, v_{2}\right)=\lambda_{h} b\left(v_{1, h}, v_{2}\right) \quad \forall v_{2} \in V_{2, h}
a(v1,h,v2)=λhb(v1,h,v2)∀v2∈V2,h
inf
v
1
∈
V
1
,
h
sup
v
2
∈
V
2
,
h
∣
a
(
v
1
,
v
2
)
∣
∥
v
1
∥
V
1
∥
v
2
∥
V
2
≥
γ
>
0
sup
v
1
∈
V
1
,
h
∣
a
(
v
1
,
v
2
)
∣
>
0
∀
v
2
∈
V
2
,
h
\
{
0
}
\begin{aligned} &\inf _{v_{1} \in V_{1, h}} \sup _{v_{2} \in V_{2, h}} \frac{\left|a\left(v_{1}, v_{2}\right)\right|}{\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}}} \geq \gamma>0 \\ &\sup _{v_{1} \in V_{1, h}}\left|a\left(v_{1}, v_{2}\right)\right|>0 \quad \forall v_{2} \in V_{2, h} \backslash\{0\} \end{aligned}
v1∈V1,hinfv2∈V2,hsup∥v1∥V1∥v2∥V2∣a(v1,v2)∣≥γ>0v1∈V1,hsup∣a(v1,v2)∣>0∀v2∈V2,h\{0}
并且我们假定
dim
(
V
1
,
h
)
=
dim
(
V
2
,
h
)
\operatorname{dim}\left(V_{1, h}\right)=\operatorname{dim}\left(V_{2, h}\right)
dim(V1,h)=dim(V2,h)
收敛阶
为了统一,我们用
X
X
X 表示
V
1
V_1
V1。
时间关系,我们直接给出一些主要结论。
推论: 令
λ
\lambda
λ 是原连续问题的特征值,令
E
=
E
(
λ
−
1
)
V
1
E=E\left(\lambda^{-1}\right) V_{1}
E=E(λ−1)V1 是原问题的广义特征空间,并且令
E
h
=
E
h
(
λ
−
1
)
V
1
E_{h}=E_{h}\left(\lambda^{-1}\right) V_{1}
Eh=Eh(λ−1)V1,那么
δ
^
(
E
,
E
h
)
≤
C
sup
u
∈
E
∥
u
∥
=
1
inf
v
∈
V
1
,
h
∥
u
−
v
∥
V
1
\hat{\delta}\left(E, E_{h}\right) \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}}
δ^(E,Eh)≤C∥u∥=1u∈Esupv∈V1,hinf∥u−v∥V1
推论: 令
λ
\lambda
λ 是原连续问题的特征值,
λ
^
h
\widehat{\lambda}_{h}
λ
h 表示逼近
λ
\lambda
λ 的
m
m
m 个特征值的算术平均。 那么,
∣
λ
−
λ
^
h
∣
≤
C
sup
u
∈
E
∥
u
∥
=
1
inf
v
∈
V
1
,
h
∥
u
−
v
∥
V
1
sup
u
∈
E
∗
inf
∥
u
∥
=
1
v
∈
V
2
,
h
∥
u
−
v
∥
V
2
\left|\lambda-\widehat{\lambda}_{h}\right| \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} \sup _{u \in E^{*}} \inf _{\|u\|=1} v \in V_{2, h}\|u-v\|_{V_{2}}
∣∣∣λ−λ
h∣∣∣≤C∥u∥=1u∈Esupv∈V1,hinf∥u−v∥V1u∈E∗sup∥u∥=1infv∈V2,h∥u−v∥V2
这里
E
E
E 是
λ
\lambda
λ 广义特征函数空间,
E
∗
E^{*}
E∗ 关于
λ
\lambda
λ 的广义共轭特征函数空间。
推论: 对
i
=
1
,
…
,
m
i=1, \ldots, m
i=1,…,m,我们有
∣
λ
−
λ
i
,
h
∣
α
≤
C
sup
u
∈
E
∥
u
∥
=
1
inf
v
∈
V
1
,
h
∥
u
∈
E
∗
∥
u
−
v
∥
V
1
sup
∥
u
∥
=
1
inf
∥
u
,
h
∥
u
−
v
∥
V
2
\left|\lambda-\lambda_{i, h}\right|^{\alpha} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h} \atop \| u \in E^{*}}\|u-v\|_{V_{1}} \sup _{\|u\|=1} \inf _{\| u, h}\|u-v\|_{V_{2}}
∣λ−λi,h∣α≤C∥u∥=1u∈Esup∥u∈E∗v∈V1,hinf∥u−v∥V1∥u∥=1sup∥u,hinf∥u−v∥V2
这里
E
E
E 是
λ
\lambda
λ 广义特征函数空间,
E
∗
E^{*}
E∗ 关于
λ
\lambda
λ 的广义共轭特征函数空间。
推论: 令
{
λ
h
}
\left\{\lambda_{h}\right\}
{λh} 是收敛到
λ
\lambda
λ 的离散特征值序列。 对于某个
k
≤
α
k \leq \alpha
k≤α ,考虑一列
ker
(
λ
h
−
1
−
T
h
)
k
\operatorname{ker}\left(\lambda_{h}^{-1}-T_{h}\right)^{k}
ker(λh−1−Th)k 中的单位特征函数
{
u
h
}
\left\{u_{h}\right\}
{uh}(
k
k
k 阶离散广义特征函数)。那么,对于任意的整数
ℓ
\ell
ℓ 满足
k
≤
ℓ
≤
α
k \leq \ell \leq \alpha
k≤ℓ≤α,总存在一个连续问题的
ℓ
\ell
ℓ 阶广义特征向量
u
(
h
)
u(h)
u(h),使得
∥
u
(
h
)
−
u
h
∥
V
1
α
/
(
ℓ
−
k
+
1
)
≤
C
sup
u
∈
E
∥
u
∥
=
1
inf
v
∈
V
1
,
h
∥
u
−
v
∥
V
1
.
\left\|u(h)-u_{h}\right\|_{V_{1}}^{\alpha /(\ell-k+1)} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} .
∥u(h)−uh∥V1α/(ℓ−k+1)≤C∥u∥=1u∈Esupv∈V1,hinf∥u−v∥V1.
对称变分特征值问题
这里我们考虑特殊的情况, V 1 = V 2 V_{1}=V_{2} V1=V2 是相同的实值希尔伯特空间,并且 T T T 是自共轭的,那么我们有如下结果:
定理: 对每个
k
k
k,我们有
λ
(
k
)
≤
λ
h
(
k
)
≤
λ
(
k
)
+
C
sup
u
∈
E
∥
u
∥
=
1
inf
v
∈
V
h
∥
u
−
v
∥
V
2
,
\lambda^{(k)} \leq \lambda_{h}^{(k)} \leq \lambda^{(k)}+C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{h}}\|u-v\|_{V}^{2},
λ(k)≤λh(k)≤λ(k)+C∥u∥=1u∈Esupv∈Vhinf∥u−v∥V2,
这里
E
E
E 表示
λ
(
k
)
\lambda^{(k)}
λ(k) 对应的特征空间。
定理: 令
u
(
k
)
u^{(k)}
u(k) 是
m
m
m 重特征值(
λ
(
k
)
=
⋯
=
λ
(
k
+
m
−
1
)
\lambda^{(k)}=\cdots=\lambda^{(k+m-1)}
λ(k)=⋯=λ(k+m−1))
λ
(
k
)
\lambda^{(k)}
λ(k) 的一个单位特征向量 ,
u
h
(
k
)
,
…
,
u
h
(
k
+
m
−
1
)
u_{h}^{(k)}, \ldots, u_{h}^{(k+m-1)}
uh(k),…,uh(k+m−1) 表示
m
m
m 个 收敛于
λ
(
k
)
\lambda^{(k)}
λ(k) 的离散特征值的特征函数,那么存在
w
h
(
k
)
∈
span
{
u
h
(
k
)
,
…
,
u
h
(
k
+
m
−
1
)
}
w_{h}^{(k)} \in \operatorname{span}\left\{u_{h}^{(k)}, \ldots, u_{h}^{(k+m-1)}\right\}
wh(k)∈span{uh(k),…,uh(k+m−1)}
使得
∥
u
(
k
)
−
w
h
(
k
)
∥
V
≤
C
sup
u
∈
E
∥
u
∥
=
1
inf
v
∈
V
h
∥
u
−
v
∥
V
\left\|u^{(k)}-w_{h}^{(k)}\right\|_{V} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{h}}\|u-v\|_{V}
∥∥∥u(k)−wh(k)∥∥∥V≤C∥u∥=1u∈Esupv∈Vhinf∥u−v∥V
这里
E
E
E 表示
λ
(
k
)
\lambda^{(k)}
λ(k) 对应的特征空间。