特征值问题误差分析:Babuska–Osborn紧算子谱逼近理论

特征值问题误差分析:Babuska–Osborn紧算子谱逼近理论


上午好,各位。非常荣幸站在这里。且,今天我想给大家分享一些关于特征值问题的误差分析。
关于我们的讨论班,我提议用说英文。就是,关于我们的讨论班,我提一个建议。我觉得大家可以英文来讲。事实上,我们以前就这么干过,并且取得了不错的成果。为什么呢?因为大家以后有可能不免要在国际会议上做报告,要和外国人交流,讨论班就是一个很好的练习的机会。
有问题吗?那么今天就从我这里开始,以后我也很可能就参与到你们的讨论班当中来。try to persuade everybody……don’t be shy, just try, OK? Speak as more as possible。反对无效,反对无效,反对无效,好,我说服了所有人。

从一个简单的例子开始

一维例子

让我们从一个简单的例子讲起。让 Ω = [ 0 , π ] \Omega = [0,\pi] Ω=[0,π],我们寻找特征对 ( λ , u ) , u ≠ 0 (\lambda,u), u \neq 0 (λ,u),u=0,使得
− u ′ ′ ( x ) = λ u ( x )  in  Ω , u ( 0 ) = u ( π ) = 0. \begin{aligned} -u^{\prime \prime}(x) &=\lambda u(x) \quad \text { in } \Omega, \\ u(0) &=u(\pi)=0 . \end{aligned} u(x)u(0)=λu(x) in Ω,=u(π)=0.
这个问题具有真解 λ = k 2 , u = sin ⁡ ( k x ) , k = 1 , 2 , 3 , ⋯ \lambda = k^2, u=\sin(kx), k=1,2,3,\cdots λ=k2,u=sin(kx),k=1,2,3,。取 V = H 0 1 ( Ω ) V=H_{0}^{1}(\Omega) V=H01(Ω),标准的有限元方法告诉我们,上述问题的弱形式是,寻找 λ ∈ R \lambda \in \mathbb{R} λR 和非零 u ∈ V u \in V uV,使得,
∫ 0 π u ′ ( x ) v ′ ( x ) d x = λ ∫ 0 π u ( x ) v ( x ) d x ∀ v ∈ V \int_{0}^{\pi} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\lambda \int_{0}^{\pi} u(x) v(x) \mathrm{d} x \quad \forall v \in V 0πu(x)v(x)dx=λ0πu(x)v(x)dxvV
它的有限元逼近是,取 V h = span ⁡ { φ 1 , … , φ N } ⊂ V V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\} \subset V Vh=span{φ1,,φN}V,那么,我们要求 λ h ∈ R \lambda_{h} \in \mathbb{R} λhR 和非零 u h ∈ V h u_{h} \in V_{h} uhVh,使得
∫ 0 π u h ′ ( x ) v ′ ( x ) d x = λ h ∫ 0 π u h ( x ) v ( x ) d x ∀ v ∈ V h \int_{0}^{\pi} u_{h}^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\lambda_{h} \int_{0}^{\pi} u_{h}(x) v(x) \mathrm{d} x \quad \forall v \in V_{h} 0πuh(x)v(x)dx=λh0πuh(x)v(x)dxvVh

它的代数形式是,
A x = λ M x A \mathrm{x}=\lambda M \mathrm{x} Ax=λMx
其中的 A = { a i j } i , j = 1 N A=\left\{a_{i j}\right\}_{i, j=1}^{N} A={aij}i,j=1N 是刚度矩阵, M = { m i j } i , j = 1 N M=\left\{m_{i j}\right\}_{i, j=1}^{N} M={mij}i,j=1N 是质量矩阵,他们的元素是:
a i j = ∫ 0 π φ j ′ ( x ) φ i ′ ( x ) d x a_{i j}=\int_{0}^{\pi} \varphi_{j}^{\prime}(x) \varphi_{i}^{\prime}(x) \mathrm{d} x aij=0πφj(x)φi(x)dx
m i j = ∫ 0 π φ j ( x ) φ i ( x ) d x m_{i j}=\int_{0}^{\pi} \varphi_{j}(x) \varphi_{i}(x) \mathrm{d} x mij=0πφj(x)φi(x)dx

P1 元逼近

为了方便,我们不妨更具体一些。我们把 [ 0 , π ] [0,\pi] [0,π] 剖分成 N + 1 N+1 N+1 份,区间长度为 h = 1 N + 1 h=\frac{1}{N+1} h=N+11,有限元空间我们用 P 1 \mathcal{P}_{1} P1。简单的计算,我们可以得到刚度矩阵和质量矩阵。
a i j = 1 h ⋅ { 2  for  i = j , − 1  for  ∣ i − j ∣ = 1 , 0  otherwise  m i j = h ⋅ { 4 / 6  for  i = j 1 / 6  for  ∣ i − j ∣ = 1 0  otherwise  a_{i j}=\frac{1}{h} \cdot\left\{\begin{array}{ll} 2 & \text { for } i=j, \\ -1 & \text { for }|i-j|=1, \\ 0 & \text { otherwise } \end{array} \quad m_{i j}=h \cdot \begin{cases}4 / 6 & \text { for } i=j \\ 1 / 6 & \text { for }|i-j|=1 \\ 0 & \text { otherwise }\end{cases}\right. aij=h1210 for i=j, for ij=1, otherwise mij=h4/61/60 for i=j for ij=1 otherwise 
不妨取 N = 3 N=3 N=3,我用 MATLAB 算了一下, λ h ( 1 ) = 1.0524 \lambda_h^{(1)} = 1.0524 λh(1)=1.0524 λ h ( 2 ) = 4.8634 \lambda_h^{(2)} = 4.8634 λh(2)=4.8634 λ h ( 3 ) = 12.843 \lambda_h^{(3)} = 12.843 λh(3)=12.843,且 u h ( 1 ) = [ 0.7071 , 1 , 0.7071 ] u_h^{(1)} = [0.7071,1,0.7071] uh(1)=[0.7071,1,0.7071] u h ( 2 ) = [ 1 , 0 , − 1 ] u_h^{(2)} = [1,0,-1] uh(2)=[1,0,1] u h ( 3 ) = [ 0.7071 , − 1 , 0.7071 ] u_h^{(3)} = [0.7071,-1,0.7071] uh(3)=[0.7071,1,0.7071],它刚好就是:
u h ( k ) ( i h ) = sin ⁡ ( k i h ) , i = 1 , … , N u_{h}^{(k)}(i h)=\sin (k i h), \quad i=1, \ldots, N uh(k)(ih)=sin(kih),i=1,,N
λ h ( k ) = ( 6 / h 2 ) 1 − cos ⁡ k h 2 + cos ⁡ k h \lambda_{h}^{(k)}=\left(6 / h^{2}\right) \frac{1-\cos k h}{2+\cos k h} λh(k)=(6/h2)2+coskh1coskh
那么,我们可以很容易地看到,
∥ u ( k ) − u h ( k ) ∥ V = O ( h ) ∣ λ ( k ) − λ h ( k ) ∣ = O ( h 2 ) \left\|u^{(k)}-u_{h}^{(k)}\right\|_{V}=O(h) \quad\left|\lambda^{(k)}-\lambda_{h}^{(k)}\right|=O\left(h^{2}\right) u(k)uh(k)V=O(h)λ(k)λh(k)=O(h2)
这里的 u ( k ) ( x ) = sin ⁡ ( k x ) u^{(k)}(x)=\sin (k x) u(k)(x)=sin(kx) λ ( k ) = k 2 \lambda^{(k)}=k^{2} λ(k)=k2。事实上,做泰勒展开,
1 − cos ⁡ k h 2 + cos ⁡ k h = 1 6 ( k h ) 2 + 1 72 ( k h ) 4 + O ( k h ) 6 \frac{1-\cos k h}{2+\cos k h} = \frac{1}{6}(kh)^2+\frac{1}{72}(kh)^4+O(kh)^6 2+coskh1coskh=61(kh)2+721(kh)4+O(kh)6.
代入即可得到这样一个估计。

一些观测和思考

一些重要观测:

  • 数值解出来的特征函数,是正弦函数在节点处的插值。这意味着更密的网格才能捕捉到更高频率的特征。
  • 数值特征值从上逼近特征值。
    λ ( k ) ≤ λ h ( k ) ≤ λ ( k ) + C ( k ) h 2 \lambda^{(k)} \leq \lambda_{h}^{(k)} \leq \lambda^{(k)}+C(k) h^{2} λ(k)λh(k)λ(k)+C(k)h2
    这是因为,
    λ h ( k ) = k 2 + ( k 4 / 12 ) h 2 + O ( k 6 h 4 ) ,  as  h → 0 \lambda_{h}^{(k)}=k^{2}+\left(k^{4} / 12\right) h^{2}+O\left(k^{6} h^{4}\right), \quad \text { as } h \rightarrow 0 λh(k)=k2+(k4/12)h2+O(k6h4), as h0
  • 特征值的误差估计是特征向量的两倍,更一般地,对于 p p p 阶拉格朗日元,
    ∥ u ( k ) − u h ( k ) ∥ V = O ( h p ) ∣ λ ( k ) − λ h ( k ) ∣ = O ( h 2 p ) \left\|u^{(k)}-u_{h}^{(k)}\right\|_{V}=O\left(h^{p}\right) \quad\left|\lambda^{(k)}-\lambda_{h}^{(k)}\right|=O\left(h^{2 p}\right) u(k)uh(k)V=O(hp)λ(k)λh(k)=O(h2p)

一个问题是,如何衡量特征函数的误差?因为对应于同一个特征值的特征函数并不是唯一的。

  • 特征子空间的任意一个元素都是特征函数。
  • 单特征值的特征向量,即使做了归一化,依然在差一个符号的意义下不唯一。

一些基本定义

下面我们将介绍紧算子谱逼近理论。首先,我们给出一些定义。
X X X 是希尔伯特空间, T : X → X T: X \rightarrow X T:XX 是一个紧线性算子。

  • 预解集(正则集) ρ ( T ) \rho(T) ρ(T)
    { z ∈ C ∣ ( z I − T ) 是 个 双 射 } . \left\{z \in \mathbb{C} \mid (zI-T)是个双射 \right\}. {zC(zIT)}.
  • 预解算子: ( z − T ) − 1 (z-T)^{-1} (zT)1。这里省略了 I I I
  • 谱集: σ ( T ) = C \ ρ ( T ) \sigma(T)=\mathbb{C} \backslash \rho(T) σ(T)=C\ρ(T)。所有非零的谱集都是特征值,零可是可不是。
  • λ − T \lambda-T λT 的上升重数( λ \lambda λ 非零特征值):最小整数 α \alpha α,使得 ker ⁡ ( λ − T ) α = ker ⁡ ( λ − T ) α + 1 \operatorname{ker}(\lambda-T)^{\alpha}=\operatorname{ker}(\lambda-T)^{\alpha+1} ker(λT)α=ker(λT)α+1
  • 特征值代数重数: dim ⁡ ( ker ⁡ ( λ − T ) α ) \dim (\operatorname{ker}(\lambda-T)^{\alpha}) dim(ker(λT)α)
  • 广义特征向量: ker ⁡ ( λ − T ) α \operatorname{ker}(\lambda-T)^{\alpha} ker(λT)α 中的元素。
  • 广义特征向量的阶:一个广义特征向量是 k k k 阶的,当它在 ker ⁡ ( λ − T ) k \operatorname{ker}(\lambda-T)^{k} ker(λT)k,但不在 ker ⁡ ( λ − T ) k − 1 \operatorname{ker}(\lambda-T)^{k-1} ker(λT)k1
  • 特征值几何重数: dim ⁡ ( ker ⁡ ( λ − T ) ) \dim (\operatorname{ker}(\lambda-T)^{}) dim(ker(λT))

T T T 是自共轭的时候,所有特征值的上升重数为 1,几何重数等于代数重数,所有的广义特征向量都是特征向量。

  • Riesz 谱投影:给定一个闭合曲线 Γ ⊂ ρ ( T ) \Gamma \subset \rho(T) Γρ(T),它包围了一个特征值 λ \lambda λ,那么,谱投影 E ( λ ) : X → X E(\lambda): X \rightarrow X E(λ):XX,定义为:
    E ( λ ) = 1 2 π i ∫ Γ ( z − T ) − 1   d z E(\lambda)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}(z-T)^{-1} \mathrm{~d} z E(λ)=2πi1Γ(zT)1 dz

谱投影的值域就是广义特征向量空间,
E ( λ ) X = ker ⁡ ( λ − T ) α E(\lambda) X=\operatorname{ker}(\lambda-T)^{\alpha} E(λ)X=ker(λT)α
如果 Γ \Gamma Γ 包含更多的特征值,那么
E ( λ 1 , λ 2 , … , λ n ) X = ⨁ i = 1 n ker ⁡ ( λ i − T ) α i E\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) X=\bigoplus_{i=1}^{n} \operatorname{ker}\left(\lambda_{i}-T\right)^{\alpha_{i}} E(λ1,λ2,,λn)X=i=1nker(λiT)αi

  • 共轭: T ∗ : X → X T^{*}: X \rightarrow X T:XX 表示 T T T 的共轭。

T T T T ∗ T^* T 分享相同的几何重数,代数重数和共轭的特征值。

变分特征值问题

特征值问题

下面考虑变分特征值问题。我们主要考虑对称特征值的情况。
V V V H H H 都是希尔伯特空间, V ⊂ H V \subset H VH 是稠密连续嵌入。令 a : V × V → R a: V \times V \rightarrow \mathbb{R} a:V×VR b : H × H → R b: H \times H \rightarrow \mathbb{R} b:H×HR 是对称连续的双线性型,且 a a a 满足椭圆性,即
a ( v , v ) ≥ α ∥ v ∥ V 2 ∀ v ∈ V a(v, v) \geq \alpha\|v\|_{V}^{2} \quad \forall v \in V a(v,v)αvV2vV
那么我们要考虑的变分特征值问题是,寻求 λ ∈ R \lambda \in \mathbb{R} λR u ∈ V , u ≠ 0 u \in V, u \neq 0 uV,u=0
a ( u , v ) = λ b ( u , v ) ∀ v ∈ V a(u, v)=\lambda b(u, v) \quad \forall v \in V a(u,v)=λb(u,v)vV
解算子 T : H → H T: H \rightarrow H T:HH 定义为:
a ( T f , v ) = b ( f , v ) ∀ v ∈ V a(T f, v)=b(f, v) \quad \forall v \in V a(Tf,v)=b(f,v)vV
我们假定 T T T 是自共轭的,它是紧算子。它的特征值的倒数正好是变分特征值问题的特征值。
我们把特征值按一种自然的方式排一下:
λ ( 1 ) ≤ λ ( 2 ) ≤ ⋯ ≤ λ ( k ) ≤ ⋯ \lambda^{(1)} \leq \lambda^{(2)} \leq \cdots \leq \lambda^{(k)} \leq \cdots λ(1)λ(2)λ(k)
我们用 u ( k ) u^{(k)} u(k) 表示相应的特征函数,并且被归一化, b ( u ( k ) , u ( k ) ) = 1 b\left(u^{(k)}, u^{(k)}\right)=1 b(u(k),u(k))=1 E ( k ) = span ⁡ { u ( k ) } E^{(k)}=\operatorname{span}\left\{u^{(k)}\right\} E(k)=span{u(k)}。容易推导得到,特征函数具有正交性:
a ( u ( m ) , u ( n ) ) = b ( u ( m ) , u ( n ) ) = 0  if  m ≠ n a\left(u^{(m)}, u^{(n)}\right)=b\left(u^{(m)}, u^{(n)}\right)=0 \quad \text { if } m \neq n a(u(m),u(n))=b(u(m),u(n))=0 if m=n

特征值刻画

Rayleigh 商是刻画特征值的一个重要工具。
λ ( 1 ) = min ⁡ v ∈ V a ( v , v ) b ( v , v ) , u ( 1 ) = arg ⁡ min ⁡ v ∈ V a ( v , v ) b ( v , v ) , λ ( k ) = min ⁡ v ∈ ( ⊕ i = 1 E ( i ) ) ⊥ a ( v , v ) b ( v , v ) , u ( k ) = arg ⁡ min ⁡ v ∈ ( ⊕ i = 1 E ( i ) ) ⊥ a ( v , v ) b ( v , v ) , \begin{aligned} \lambda^{(1)}=& \min _{v \in V} \frac{a(v, v)}{b(v, v)}, & u^{(1)}=& \underset{v \in V}{\arg \min } \frac{a(v, v)}{b(v, v)}, \\ \lambda^{(k)}=& \min _{v \in\left(\underset{i=1}{\oplus} E^{(i)}\right)^{\perp}} \frac{a(v, v)}{b(v, v)}, & u^{(k)}=& \underset{v \in\left(\underset{i=1}{\oplus} E^{(i)}\right)^{\perp}}{\arg \min } \frac{a(v, v)}{b(v, v)}, \end{aligned} λ(1)=λ(k)=vVminb(v,v)a(v,v),v(i=1E(i))minb(v,v)a(v,v),u(1)=u(k)=vVargminb(v,v)a(v,v),v(i=1E(i))argminb(v,v)a(v,v),
这里的正交补的正交,可以由 a a a b b b 诱导都可以。

假设 V h V_h Vh V V V 的希尔伯特子空间,和有限元中一样,变分问题的 Galerkin 离散可以写为:
a ( u h , v ) = λ h b ( u h , v ) ∀ v ∈ V h a\left(u_{h}, v\right)=\lambda_{h} b\left(u_{h}, v\right) \quad \forall v \in V_{h} a(uh,v)=λhb(uh,v)vVh

类似原来特征值问题,我们可以有:
a ( T h f , v ) = b ( f , v ) ∀ v ∈ V h a\left(T_{h} f, v\right)=b(f, v) \quad \forall v \in V_{h} a(Thf,v)=b(f,v)vVh
λ h ( 1 ) ≤ λ h ( 2 ) ≤ ⋯ ≤ λ h ( k ) ≤ ⋯ \lambda_{h}^{(1)} \leq \lambda_{h}^{(2)} \leq \cdots \leq \lambda_{h}^{(k)} \leq \cdots λh(1)λh(2)λh(k)
b ( u h ( k ) , u h ( k ) ) = 1 b\left(u_{h}^{(k)}, u_{h}^{(k)}\right)=1 b(uh(k),uh(k))=1
a ( u h ( m ) , u h ( n ) ) = b ( u h ( m ) , u h ( n ) ) = 0  if  m ≠ n a\left(u_{h}^{(m)}, u_{h}^{(n)}\right)=b\left(u_{h}^{(m)}, u_{h}^{(n)}\right)=0 \quad \text { if } m \neq n a(uh(m),uh(n))=b(uh(m),uh(n))=0 if m=n
λ h ( 1 ) = min ⁡ v ∈ V h a ( v , v ) b ( v , v ) , u h ( 1 ) = arg ⁡ min ⁡ v ∈ V h a ( v , v ) b ( v , v ) λ h ( k ) = min ⁡ v ∈ ( ⊕ i = 1 E E h ( i ) ) ⊥ a ( v , v ) b ( v , v ) , u h ( k ) = arg ⁡ min ⁡ v ∈ ( ⊕ i = 1 E h ( i ) ) ⊥ a ( v , v ) b ( v , v ) , \begin{aligned} &\lambda_{h}^{(1)}=\min _{v \in V_{h}} \frac{a(v, v)}{b(v, v)}, \quad u_{h}^{(1)}=\underset{v \in V_{h}}{\arg \min } \frac{a(v, v)}{b(v, v)} \\ &\lambda_{h}^{(k)}=\min _{v \in\left(\begin{array}{c} \oplus \\ i=1 \end{array}{E} E_{h}^{(i)}\right)^{\perp}} \frac{a(v, v)}{b(v, v)}, \quad u_{h}^{(k)}=\arg \min _{v \in\left(\underset{i=1}{\oplus} E_{h}^{(i)}\right)^{\perp}} \frac{a(v, v)}{b(v, v)}, \end{aligned} λh(1)=vVhminb(v,v)a(v,v),uh(1)=vVhargminb(v,v)a(v,v)λh(k)=v(i=1EEh(i))minb(v,v)a(v,v),uh(k)=argv(i=1Eh(i))minb(v,v)a(v,v),
具体不在赘述。因为 V h ⊂ V V_{h} \subset V VhV,那么,容易知道
λ ( 1 ) ≤ λ h ( 1 ) \lambda^{(1)} \leq \lambda_{h}^{(1)} λ(1)λh(1)
当考虑第 k k k 个特征值的时候,我们不能知道得到上述关系。所以我们介绍极小-极大值性质。

极小极大性质 特征值问题的第 k k k 个特征值 λ ( k ) \lambda^{(k)} λ(k) 满足
λ ( k ) = min ⁡ E ∈ V ( k ) max ⁡ v ∈ E a ( v , v ) b ( v , v ) \lambda^{(k)}=\min _{E \in V^{(k)}} \max _{v \in E} \frac{a(v, v)}{b(v, v)} λ(k)=EV(k)minvEmaxb(v,v)a(v,v)
这里 V ( k ) V^{(k)} V(k) 表示 V V V 的 所有 k k k 维子空间。

对于离散问题,也有类似的性质:
λ h ( k ) = min ⁡ E h ∈ V h ( k ) max ⁡ v ∈ E h a ( v , v ) b ( v , v ) \lambda_{h}^{(k)}=\min _{E_{h} \in V_{h}^{(k)}} \max _{v \in E_{h}} \frac{a(v, v)}{b(v, v)} λh(k)=EhVh(k)minvEhmaxb(v,v)a(v,v)

那么,对于协调逼近 V h ⊂ V V_{h} \subset V VhV,我们立马就可以得到所有的特征值从上面被逼近,即
λ ( k ) ≤ λ h ( k ) ∀ k \lambda^{(k)} \leq \lambda_{h}^{(k)} \quad \forall k λ(k)λh(k)k

误差的刻画

诚如第一节所讲,误差的刻画是比较困难的。为此,我们定义两个希尔伯特空间的 δ \delta δ 距离:
δ ( E , F ) = sup ⁡ u ∈ E ∥ u ∥ H = 1 inf ⁡ v ∈ F ∥ u − v ∥ H δ ^ ( E , F ) = max ⁡ ( δ ( E , F ) , δ ( F , E ) ) \begin{aligned} \delta(E, F)=& \sup _{u \in E \atop\|u\|_{H}=1} \inf _{v \in F}\|u-v\|_{H} \\ \hat{\delta}(E, F)=& \max (\delta(E, F), \delta(F, E)) \end{aligned} δ(E,F)=δ^(E,F)=uH=1uEsupvFinfuvHmax(δ(E,F),δ(F,E))
我们用 m ( k ) m(k) m(k) 表示前 k k k 个不同特征值的特征空间维数,那么离散问题收敛到连续问题,我们可以写为:
对任意 ε > 0 \varepsilon>0 ε>0 k > 0 k>0 k>0,存在, h 0 > 0 h_{0}>0 h0>0 使得,对所有的 h < h 0 h<h_{0} h<h0,我们有
max ⁡ 1 ≤ i ≤ m ( k ) ∣ λ ( i ) − λ h ( i ) ∣ ≤ ε δ ^ ( ⊕ ( k ) i = 1 E ( i ) , ⊕ = 1 m ( k ) E h ( i ) ) ≤ ε \begin{gathered} \max _{1 \leq i \leq m(k)}\left|\lambda^{(i)}-\lambda_{h}^{(i)}\right| \leq \varepsilon \\ \hat{\delta}\left(\underset{i=1}{\oplus(k)} E^{(i)}, \stackrel{m(k)}{\oplus=1} E_{h}^{(i)}\right) \leq \varepsilon \end{gathered} 1im(k)maxλ(i)λh(i)εδ^(i=1(k)E(i),=1m(k)Eh(i))ε

性质: 离散特征值问题收敛到连续特征值问题,当且仅当
∥ T − T h ∥ L ( H ) → 0  当 h → 0 \left\|T-T_{h}\right\|_{\mathcal{L}(H)} \rightarrow 0 \quad \text { 当} h \rightarrow 0 TThL(H)0 h0

如果 T : V → V T: V \rightarrow V T:VV 是紧的,且那么上式可以被改为
∥ T − T h ∥ L ( V ) → 0  当 h → 0 \left\|T-T_{h}\right\|_{\mathcal{L}(V)} \rightarrow 0 \quad \text { 当} h \rightarrow 0 TThL(V)0 h0

P h P_{h} Ph 是关于 a a a 的 Riesz 投影。

性质: T T T 是紧的从 H H H V V V P h P_{h} Ph 强收敛到从 V V V H H H 的单位矩阵,那么上一个性质成立从 H H H H H H

如果 T : V → V T: V \rightarrow V T:VV 是紧的, P h P_h Ph 强点收敛于单位矩阵从 V V V V V V,那么
∥ T − T h ∥ L ( V ) → 0 当 h → 0 \left\|T-T_{h}\right\|_{\mathcal{L}(V)} \rightarrow 0 \quad 当h \rightarrow 0 TThL(V)0h0

Babuska-Osborn 理论

收敛性

我们依然考虑希尔伯特空间中的对称问题。假定 X X X 是希尔伯特空间。 T : X → X T: X \rightarrow X T:XX 是紧线性算子。我们考虑 T h T_h Th 使得,
∥ T − T h ∥ L ( X ) → 0  as  h → 0 \left\|T-T_{h}\right\|_{\mathcal{L}(X)} \rightarrow 0 \quad \text { as } h \rightarrow 0 TThL(X)0 as h0
对于只包含一个特征值 λ \lambda λ 的曲线 Γ ⊂ ρ ( T ) \Gamma \subset \rho\left(T_{}\right) Γρ(T),当 h h h 足够小时, Γ ⊂ ρ ( T h ) \Gamma \subset \rho\left(T_{h}\right) Γρ(Th),且 Γ \Gamma Γ 刚好包含了 T h T_h Th m m m 个特征值。

更简单地说,考虑离散谱投影:
E h ( λ ) = 1 2 π i ∫ Γ ( z − T h ) − 1   d z E_{h}(\lambda)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}\left(z-T_{h}\right)^{-1} \mathrm{~d} z Eh(λ)=2πi1Γ(zTh)1 dz
我们有,
∥ E ( λ ) − E h ( λ ) ∥ L ( X ) → 0  as  h → 0 \left\|E(\lambda)-E_{h}(\lambda)\right\|_{\mathcal{L}(X)} \rightarrow 0 \quad \text { as } h \rightarrow 0 E(λ)Eh(λ)L(X)0 as h0

我们可以总结为如下定理:

定理: T → T h T \rightarrow T_h TTh,那么 λ i , h → λ \lambda_{i,h} \rightarrow \lambda λi,hλ,且
∥ E ( λ ) − E h ( λ ) ∥ L ( X ) → 0  as  h → 0 \left\|E(\lambda)-E_{h}(\lambda)\right\|_{\mathcal{L}(X)} \rightarrow 0 \quad \text { as } h \rightarrow 0 E(λ)Eh(λ)L(X)0 as h0

通常的框架

V 1 V_1 V1 V 2 V_2 V2 是复希尔伯特空间,我们需要找 λ ∈ C \lambda \in \mathbb{C} λC u ∈ V 1 u \in V_{1} uV1 u ≠ 0 u\neq 0 u=0,使得,
a ( u , v ) = λ b ( u , v ) ∀ v ∈ V 2 a(u, v)=\lambda b(u, v) \quad \forall v \in V_{2} a(u,v)=λb(u,v)vV2
a : V 1 × V 2 → C a: V_{1} \times V_{2} \rightarrow \mathbb{C} a:V1×V2C b : V 1 × V 2 → C b: V_{1} \times V_{2} \rightarrow \mathbb{C} b:V1×V2C 是拟双线性形式, a a a 满足连续性,
∣ a ( v 1 , v 2 ) ∣ ≤ C ∥ v 1 ∥ V 1 ∥ v 2 ∥ V 2 ∀ v 1 ∈ V 1 ∀ v 2 ∈ V 2 \left|a\left(v_{1}, v_{2}\right)\right| \leq C\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}} \quad \forall v_{1} \in V_{1} \forall v_{2} \in V_{2} a(v1,v2)Cv1V1v2V2v1V1v2V2
b b b 在紧范数 H 1 H_1 H1 (在 H 1 H_1 H1 的意义下, V 1 V_1 V1 中的任意 V 1 V_1 V1 意义下的有界序列有柯西子列)的意义下是有界的,
∣ b ( v 1 , v 2 ) ∣ ≤ C ∥ v 1 ∥ H 1 ∥ v 2 ∥ V 2 ∀ v 1 ∈ V 1 ∀ v 2 ∈ V 2 \left|b\left(v_{1}, v_{2}\right)\right| \leq C\left\|v_{1}\right\|_{H_{1}}\left\|v_{2}\right\|_{V_{2}} \quad \forall v_{1} \in V_{1} \forall v_{2} \in V_{2} b(v1,v2)Cv1H1v2V2v1V1v2V2
我们假定类强制性条件:
inf ⁡ v 1 ∈ V 1 sup ⁡ v 2 ∈ V 2 ∣ a ( v 1 , v 2 ) ∣ ∥ v 1 ∥ V 1 ∥ v 2 ∥ V 2 ≥ γ > 0 sup ⁡ v 1 ∈ V 1 ∣ a ( v 1 , v 2 ) ∣ > 0 ∀ v 2 ∈ V 2 \ { 0 } \begin{aligned} &\inf _{v_{1} \in V_{1}} \sup _{v_{2} \in V_{2}} \frac{\left|a\left(v_{1}, v_{2}\right)\right|}{\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}}} \geq \gamma>0 \\ &\sup _{v_{1} \in V_{1}}\left|a\left(v_{1}, v_{2}\right)\right|>0 \quad \forall v_{2} \in V_{2} \backslash\{0\} \end{aligned} v1V1infv2V2supv1V1v2V2a(v1,v2)γ>0v1V1supa(v1,v2)>0v2V2\{0}
那么我们就可以引入解算子 T : V 1 → V 1 T: V_{1} \rightarrow V_{1} T:V1V1 T ∗ : V 2 → V 2 T_{*}: V_{2} \rightarrow V_{2} T:V2V2
a ( T f , v ) = b ( f , v ) ∀ f ∈ V 1 ∀ v ∈ V 2 , a ( v , T ∗ g ) = b ( v , g ) ∀ g ∈ V 2 ∀ v ∈ V 1 . \begin{aligned} a(T f, v)=b(f, v) & \forall f \in V_{1} \forall v \in V_{2}, \\ a\left(v, T_{*} g\right)=b(v, g) & \forall g \in V_{2} \forall v \in V_{1} . \end{aligned} a(Tf,v)=b(f,v)a(v,Tg)=b(v,g)fV1vV2,gV2vV1.
从上面的假设中,我们可以推的 T T T T ∗ T_{*} T 是个紧算子。

T T T V 1 V_1 V1 上的共轭,可以写为:
T ∗ = A ∗ ∘ T ∗ ∘ A ∗ − 1 T^{*}=A^{*} \circ T_{*} \circ A^{*-1} T=ATA1
其中 A : V 1 → V 2 A: V_{1} \rightarrow V_{2} A:V1V2 是和 a a a 相关的线性算子。

我们也可以定义上述特征值问题的共轭特征值问题。寻求 λ ∈ C \lambda \in \mathbb{C} λC u ∈ V 2 u \in V_{2} uV2 u ≠ 0 u \neq 0 u=0 使得,
a ( v , u ) = λ b ( v , u ) ∀ v ∈ V 1 a(v, u)=\lambda b(v, u) \quad \forall v \in V_{1} a(v,u)=λb(v,u)vV1
离散特征值问题公式形式能够被类似地定义,罗列如下:
a ( v 1 , h , v 2 ) = λ h b ( v 1 , h , v 2 ) ∀ v 2 ∈ V 2 , h a\left(v_{1, h}, v_{2}\right)=\lambda_{h} b\left(v_{1, h}, v_{2}\right) \quad \forall v_{2} \in V_{2, h} a(v1,h,v2)=λhb(v1,h,v2)v2V2,h
inf ⁡ v 1 ∈ V 1 , h sup ⁡ v 2 ∈ V 2 , h ∣ a ( v 1 , v 2 ) ∣ ∥ v 1 ∥ V 1 ∥ v 2 ∥ V 2 ≥ γ > 0 sup ⁡ v 1 ∈ V 1 , h ∣ a ( v 1 , v 2 ) ∣ > 0 ∀ v 2 ∈ V 2 , h \ { 0 } \begin{aligned} &\inf _{v_{1} \in V_{1, h}} \sup _{v_{2} \in V_{2, h}} \frac{\left|a\left(v_{1}, v_{2}\right)\right|}{\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}}} \geq \gamma>0 \\ &\sup _{v_{1} \in V_{1, h}}\left|a\left(v_{1}, v_{2}\right)\right|>0 \quad \forall v_{2} \in V_{2, h} \backslash\{0\} \end{aligned} v1V1,hinfv2V2,hsupv1V1v2V2a(v1,v2)γ>0v1V1,hsupa(v1,v2)>0v2V2,h\{0}

并且我们假定
dim ⁡ ( V 1 , h ) = dim ⁡ ( V 2 , h ) \operatorname{dim}\left(V_{1, h}\right)=\operatorname{dim}\left(V_{2, h}\right) dim(V1,h)=dim(V2,h)

收敛阶

为了统一,我们用 X X X 表示 V 1 V_1 V1
时间关系,我们直接给出一些主要结论。

推论: λ \lambda λ 是原连续问题的特征值,令 E = E ( λ − 1 ) V 1 E=E\left(\lambda^{-1}\right) V_{1} E=E(λ1)V1 是原问题的广义特征空间,并且令 E h = E h ( λ − 1 ) V 1 E_{h}=E_{h}\left(\lambda^{-1}\right) V_{1} Eh=Eh(λ1)V1,那么
δ ^ ( E , E h ) ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u − v ∥ V 1 \hat{\delta}\left(E, E_{h}\right) \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} δ^(E,Eh)Cu=1uEsupvV1,hinfuvV1

推论: λ \lambda λ 是原连续问题的特征值, λ ^ h \widehat{\lambda}_{h} λ h 表示逼近 λ \lambda λ m m m 个特征值的算术平均。 那么,
∣ λ − λ ^ h ∣ ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u − v ∥ V 1 sup ⁡ u ∈ E ∗ inf ⁡ ∥ u ∥ = 1 v ∈ V 2 , h ∥ u − v ∥ V 2 \left|\lambda-\widehat{\lambda}_{h}\right| \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} \sup _{u \in E^{*}} \inf _{\|u\|=1} v \in V_{2, h}\|u-v\|_{V_{2}} λλ hCu=1uEsupvV1,hinfuvV1uEsupu=1infvV2,huvV2
这里 E E E λ \lambda λ 广义特征函数空间, E ∗ E^{*} E 关于 λ \lambda λ 的广义共轭特征函数空间。

推论: i = 1 , … , m i=1, \ldots, m i=1,,m,我们有
∣ λ − λ i , h ∣ α ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u ∈ E ∗ ∥ u − v ∥ V 1 sup ⁡ ∥ u ∥ = 1 inf ⁡ ∥ u , h ∥ u − v ∥ V 2 \left|\lambda-\lambda_{i, h}\right|^{\alpha} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h} \atop \| u \in E^{*}}\|u-v\|_{V_{1}} \sup _{\|u\|=1} \inf _{\| u, h}\|u-v\|_{V_{2}} λλi,hαCu=1uEsupuEvV1,hinfuvV1u=1supu,hinfuvV2
这里 E E E λ \lambda λ 广义特征函数空间, E ∗ E^{*} E 关于 λ \lambda λ 的广义共轭特征函数空间。

推论: { λ h } \left\{\lambda_{h}\right\} {λh} 是收敛到 λ \lambda λ 的离散特征值序列。 对于某个 k ≤ α k \leq \alpha kα ,考虑一列 ker ⁡ ( λ h − 1 − T h ) k \operatorname{ker}\left(\lambda_{h}^{-1}-T_{h}\right)^{k} ker(λh1Th)k 中的单位特征函数 { u h } \left\{u_{h}\right\} {uh} k k k 阶离散广义特征函数)。那么,对于任意的整数 ℓ \ell 满足 k ≤ ℓ ≤ α k \leq \ell \leq \alpha kα,总存在一个连续问题的 ℓ \ell 阶广义特征向量 u ( h ) u(h) u(h),使得
∥ u ( h ) − u h ∥ V 1 α / ( ℓ − k + 1 ) ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u − v ∥ V 1 . \left\|u(h)-u_{h}\right\|_{V_{1}}^{\alpha /(\ell-k+1)} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} . u(h)uhV1α/(k+1)Cu=1uEsupvV1,hinfuvV1.

对称变分特征值问题

这里我们考虑特殊的情况, V 1 = V 2 V_{1}=V_{2} V1=V2 是相同的实值希尔伯特空间,并且 T T T 是自共轭的,那么我们有如下结果:

定理: 对每个 k k k,我们有
λ ( k ) ≤ λ h ( k ) ≤ λ ( k ) + C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V h ∥ u − v ∥ V 2 , \lambda^{(k)} \leq \lambda_{h}^{(k)} \leq \lambda^{(k)}+C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{h}}\|u-v\|_{V}^{2}, λ(k)λh(k)λ(k)+Cu=1uEsupvVhinfuvV2,
这里 E E E 表示 λ ( k ) \lambda^{(k)} λ(k) 对应的特征空间。

定理: u ( k ) u^{(k)} u(k) m m m 重特征值( λ ( k ) = ⋯ = λ ( k + m − 1 ) \lambda^{(k)}=\cdots=\lambda^{(k+m-1)} λ(k)==λ(k+m1) λ ( k ) \lambda^{(k)} λ(k) 的一个单位特征向量 , u h ( k ) , … , u h ( k + m − 1 ) u_{h}^{(k)}, \ldots, u_{h}^{(k+m-1)} uh(k),,uh(k+m1) 表示 m m m 个 收敛于 λ ( k ) \lambda^{(k)} λ(k) 的离散特征值的特征函数,那么存在
w h ( k ) ∈ span ⁡ { u h ( k ) , … , u h ( k + m − 1 ) } w_{h}^{(k)} \in \operatorname{span}\left\{u_{h}^{(k)}, \ldots, u_{h}^{(k+m-1)}\right\} wh(k)span{uh(k),,uh(k+m1)}
使得
∥ u ( k ) − w h ( k ) ∥ V ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V h ∥ u − v ∥ V \left\|u^{(k)}-w_{h}^{(k)}\right\|_{V} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{h}}\|u-v\|_{V} u(k)wh(k)VCu=1uEsupvVhinfuvV
这里 E E E 表示 λ ( k ) \lambda^{(k)} λ(k) 对应的特征空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值