自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 《UAVs Meet LLMs...》文献阅读笔记

因此,研究者提出将LLMs与UAVs结合,利用LLMs的泛化能力和推理能力,增强无人机的自主智能,实现真正的“智能空中代理”。该文章的核心目的是探讨无人机与大语言模型之间的融合,分析当前技术的发展趋势,并提出一种基于代理智能的低空移动系统框架,以提升无人机的自主性,使其能够执行更复杂的任务,如 自主感知、记忆、推理和工具使用。提出了Agentic UAV框架,定义了智能UAV需要具备的认知、推理、记忆、工具使用等能力,为未来的无人机智能发展指明方向。

2025-03-02 13:45:37 403

原创 运用yolo11进行图片检测以验证环境是否正常/安装虚拟机并搭建linux环境

并将图片路径更改为要进行检测的图片路径,运行yolo11_predict.py后即可完成图片检测。在网上下载相应图片,运用yolo11模型进行检测,以检查环境是否搭建完善,能否正常运行程序。1. 在ultralytics目录下新建yolo11_predict.py文件。三. 收集无人机小目标数据集,对yolo11模型进行训练(正在寻找数据集)静等一会,在填写完用户称呼以及密码等信息后安装彻底完成。二. 搭建linux虚拟机环境,选择Ubuntu。(一)虚拟机VMWare安装。选择新建虚拟机,进入安装向导。

2025-01-09 12:38:28 371

原创 配置YOLO11环境

下载完成yolo11源码之后解压到D盘或其它盘文件夹内,此时点击鼠标右键文件夹通过pycharm打开,打开后需要配置虚拟环境,新版pycharm可选中文语言,点击 文件-设置,点击 项目:ultralytics-8.3.20,点击python解释器,点击右边添加解释器-添加本地解释器,进入Anaconda prompt,默认进入的是base环境,base环境的版本与下载的anaconda3版本有关,因此不建议直接使用,需要新建环境,在新建环境之前建议更改默认的pip源和conda源可加速下载速度。

2025-01-04 10:45:46 1698 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除