数字推理考察的是对数字的理解和对数字之间关系的洞察力。一般是给出4-9个数字,填一个空。本人做了几套题,总结规律如下,仅供参考。 1、 混二级等差数列:一般不会考最简单的等差数列,而是考前后项的和、差、积、商成等差数列,在这里我称之为混二级等差数列。 例如:2,4,12,48,(240),又如:1,1,2,6,(24)。此数列的后项除以前项的商成等差数列。 2、 三级等差数列:数列前后项的差算第一级,相邻差的差算第二级,相邻差的差的差算第三级,第三级的数列成等差,就算三级等差数列了。这类数列有点难度,光看是看不出来的。这样的数列一般给出的项也比较多,6个左右。例如:1,3,6,12,25,51,(98)。再加上点变化,那就更难了。 3、和数列的变式:和数列也叫斐波那契数列,就是数列的某项是前几项的和。基于这类数列的特征,所以给出的项一般在6个以上。例如:0,1,1,2,4,7,13,(24)。这个数列的第四项就是前3项的和。另一种变式就是这样的,例如:1,2,5,12,29,70,(169)。这个数列的第三项就是第二项的2倍+第一项。 4、 幂数列:这类数列的特征比较明显:基于幂函数的特点,给出的项比较少,一般4个,数列项的大小变化幅度有突越。例如:0,3,26,255,(3124)。N的N次-1,就是这个数列的通项了。 5、 质数数列:这类数列比较简单,就是给出的项都是质数,选项中只有一个质数满足条件。例如:2,3,7,11,17,(41)。 6、 分项函数:这类函数特点也比较明显,一般给出的项比较多,需要2项一组,3项一组分开考虑,故取名分项函数。例如:2,3,5,4,5,9,6,9,15,3,17,(20)。也有变式的,例如:1,4,3,5,2,6,4,7,(3)。这个数列的第2、4、6、8项分别是其前后项的和。 7、 奇偶数列:这类数列给出的数较多,需填两空,奇偶需分别对待。例如:1,3,3,5,7,9,13,15,(21),(23)。 8、 多层组合数列:由简单的数列多层组合的复杂数列。3,4,6,12,36,(216)。这个数列前后项的积与第三项之间成等比关系。 9、 自身运算数列:由第一项进行固定的函数运算,得出第二项,以此类推。例如:2,6,14,30,62,(126)。前一项*2+2=后一项。